自适应混合均值移位和粒子滤波

Phong Le, A. Duong, Hai-Quan Vu, N. Pham
{"title":"自适应混合均值移位和粒子滤波","authors":"Phong Le, A. Duong, Hai-Quan Vu, N. Pham","doi":"10.1109/RIVF.2009.5174615","DOIUrl":null,"url":null,"abstract":"The changing of dynamic models in object tracking can cause high errors in state estimation algorithms. In this paper, we propose a method, adaptive hybrid mean shift and particle filter (AHMSPF), to solve this problem. AHMSPF consists of three stages. First, the mean shift algorithm is employed to search an object candidate near the target state. Then, if this candidate is good enough, it will be used to adapt the particle filter parameters. Finally, the particle filter will estimate the target state based on these new parameters. Experimental results shown that our method has a better performance than the traditional particle filter.","PeriodicalId":243397,"journal":{"name":"2009 IEEE-RIVF International Conference on Computing and Communication Technologies","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Adaptive Hybrid Mean Shift and Particle Filter\",\"authors\":\"Phong Le, A. Duong, Hai-Quan Vu, N. Pham\",\"doi\":\"10.1109/RIVF.2009.5174615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The changing of dynamic models in object tracking can cause high errors in state estimation algorithms. In this paper, we propose a method, adaptive hybrid mean shift and particle filter (AHMSPF), to solve this problem. AHMSPF consists of three stages. First, the mean shift algorithm is employed to search an object candidate near the target state. Then, if this candidate is good enough, it will be used to adapt the particle filter parameters. Finally, the particle filter will estimate the target state based on these new parameters. Experimental results shown that our method has a better performance than the traditional particle filter.\",\"PeriodicalId\":243397,\"journal\":{\"name\":\"2009 IEEE-RIVF International Conference on Computing and Communication Technologies\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE-RIVF International Conference on Computing and Communication Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RIVF.2009.5174615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE-RIVF International Conference on Computing and Communication Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIVF.2009.5174615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

目标跟踪中动态模型的变化会导致状态估计算法的误差较大。本文提出了一种自适应混合平均偏移和粒子滤波(AHMSPF)方法来解决这一问题。AHMSPF包括三个阶段。首先,采用均值移位算法在目标状态附近搜索候选对象;然后,如果这个候选足够好,它将被用来调整粒子滤波参数。最后,粒子滤波器根据这些新参数估计目标状态。实验结果表明,该方法比传统的粒子滤波方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Hybrid Mean Shift and Particle Filter
The changing of dynamic models in object tracking can cause high errors in state estimation algorithms. In this paper, we propose a method, adaptive hybrid mean shift and particle filter (AHMSPF), to solve this problem. AHMSPF consists of three stages. First, the mean shift algorithm is employed to search an object candidate near the target state. Then, if this candidate is good enough, it will be used to adapt the particle filter parameters. Finally, the particle filter will estimate the target state based on these new parameters. Experimental results shown that our method has a better performance than the traditional particle filter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信