{"title":"基于用户喜好的群集推荐系统","authors":"김영현, 신원용","doi":"10.6109/JKIICE.2017.21.2.277","DOIUrl":null,"url":null,"abstract":"사용자가 좋아할만한 콘텐츠를 정확하게 추천하는 것은 추천 시스템에서 매우 중요한 요소 중 하나이다. 원치 않는 콘텐츠를 추천하거나, 원하는 것을 추천하지 않는 것은 사용자 만족도 측면에서 안 좋은 영향을 끼친다. 본 연구에서는 콘텐츠의 정확한 추천을 위해 사용자 군집 기반 추천 시스템을 제안한다. 제안하는 알고리즘에서 사용자들의 실제 선호도 점수와 피어슨 상관 계수를 기반으로 사용자들을 여러 군집으로 나눈다. 이 후, 특정 사용자에게 어떤 콘텐츠의 추천 여부 결정은, 같은 군집 내에 있는 다른 사용자들의 해당 콘텐츠의 실제 선호도 점수를 근거로 정한다. 제안하는 알고리즘은 군집화를 사용하지 않는 아이템 기반 협력 필터링 알고리즘보다 정밀도, 재현율, F1 스코어와 같은 추천 정확도에 있어서 의미 있는 성능 향상을 보인다.","PeriodicalId":136663,"journal":{"name":"The Journal of the Korean Institute of Information and Communication Engineering","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"사용자 선호도를 사용한 군집 기반 추천 시스템\",\"authors\":\"김영현, 신원용\",\"doi\":\"10.6109/JKIICE.2017.21.2.277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"사용자가 좋아할만한 콘텐츠를 정확하게 추천하는 것은 추천 시스템에서 매우 중요한 요소 중 하나이다. 원치 않는 콘텐츠를 추천하거나, 원하는 것을 추천하지 않는 것은 사용자 만족도 측면에서 안 좋은 영향을 끼친다. 본 연구에서는 콘텐츠의 정확한 추천을 위해 사용자 군집 기반 추천 시스템을 제안한다. 제안하는 알고리즘에서 사용자들의 실제 선호도 점수와 피어슨 상관 계수를 기반으로 사용자들을 여러 군집으로 나눈다. 이 후, 특정 사용자에게 어떤 콘텐츠의 추천 여부 결정은, 같은 군집 내에 있는 다른 사용자들의 해당 콘텐츠의 실제 선호도 점수를 근거로 정한다. 제안하는 알고리즘은 군집화를 사용하지 않는 아이템 기반 협력 필터링 알고리즘보다 정밀도, 재현율, F1 스코어와 같은 추천 정확도에 있어서 의미 있는 성능 향상을 보인다.\",\"PeriodicalId\":136663,\"journal\":{\"name\":\"The Journal of the Korean Institute of Information and Communication Engineering\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of the Korean Institute of Information and Communication Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6109/JKIICE.2017.21.2.277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of the Korean Institute of Information and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6109/JKIICE.2017.21.2.277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
사용자가 좋아할만한 콘텐츠를 정확하게 추천하는 것은 추천 시스템에서 매우 중요한 요소 중 하나이다. 원치 않는 콘텐츠를 추천하거나, 원하는 것을 추천하지 않는 것은 사용자 만족도 측면에서 안 좋은 영향을 끼친다. 본 연구에서는 콘텐츠의 정확한 추천을 위해 사용자 군집 기반 추천 시스템을 제안한다. 제안하는 알고리즘에서 사용자들의 실제 선호도 점수와 피어슨 상관 계수를 기반으로 사용자들을 여러 군집으로 나눈다. 이 후, 특정 사용자에게 어떤 콘텐츠의 추천 여부 결정은, 같은 군집 내에 있는 다른 사용자들의 해당 콘텐츠의 실제 선호도 점수를 근거로 정한다. 제안하는 알고리즘은 군집화를 사용하지 않는 아이템 기반 협력 필터링 알고리즘보다 정밀도, 재현율, F1 스코어와 같은 추천 정확도에 있어서 의미 있는 성능 향상을 보인다.