{"title":"55nm SiGe-BiCMOS中具有高基频和谐波抑制的40GHz三倍频器","authors":"M. M. Pirbazari, F. Pepe, A. Mazzanti","doi":"10.1109/ESSCIRC.2019.8902920","DOIUrl":null,"url":null,"abstract":"This paper presents a novel frequency tripler circuit topology which yields a remarkable improvement on the suppression of the driving signal frequency at the output, compared to conventional designs exploiting transistors in class-C. The active core of the circuit approximates the transfer characteristic of a third-order polynomial that ideally produces only a third-harmonic of the input signal. Implemented in a 55nm SiGe-BiCMOS technology and consuming 13.6mA from 1.7V, the tripler demonstrates ~40dB suppression of the input signal and its 5th harmonic over 16% factional bandwidth and robustness to power variation of the driving signal over a 15dB range.","PeriodicalId":402948,"journal":{"name":"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)","volume":"191 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"40GHz Frequency Tripler with High Fundamental and Harmonics Rejection in 55nm SiGe-BiCMOS\",\"authors\":\"M. M. Pirbazari, F. Pepe, A. Mazzanti\",\"doi\":\"10.1109/ESSCIRC.2019.8902920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel frequency tripler circuit topology which yields a remarkable improvement on the suppression of the driving signal frequency at the output, compared to conventional designs exploiting transistors in class-C. The active core of the circuit approximates the transfer characteristic of a third-order polynomial that ideally produces only a third-harmonic of the input signal. Implemented in a 55nm SiGe-BiCMOS technology and consuming 13.6mA from 1.7V, the tripler demonstrates ~40dB suppression of the input signal and its 5th harmonic over 16% factional bandwidth and robustness to power variation of the driving signal over a 15dB range.\",\"PeriodicalId\":402948,\"journal\":{\"name\":\"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)\",\"volume\":\"191 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESSCIRC.2019.8902920\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC.2019.8902920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
40GHz Frequency Tripler with High Fundamental and Harmonics Rejection in 55nm SiGe-BiCMOS
This paper presents a novel frequency tripler circuit topology which yields a remarkable improvement on the suppression of the driving signal frequency at the output, compared to conventional designs exploiting transistors in class-C. The active core of the circuit approximates the transfer characteristic of a third-order polynomial that ideally produces only a third-harmonic of the input signal. Implemented in a 55nm SiGe-BiCMOS technology and consuming 13.6mA from 1.7V, the tripler demonstrates ~40dB suppression of the input signal and its 5th harmonic over 16% factional bandwidth and robustness to power variation of the driving signal over a 15dB range.