在驾驶员辅助的情况下,通过多次变道来估计到达道路目标的可能性

Goodarz Mehr, A. Eskandarian
{"title":"在驾驶员辅助的情况下,通过多次变道来估计到达道路目标的可能性","authors":"Goodarz Mehr, A. Eskandarian","doi":"10.1109/ITSC45102.2020.9294674","DOIUrl":null,"url":null,"abstract":"This paper presents a model to estimate the probability of reaching a target position on the road using multiple lane changes based on parameters corresponding to traffic flow and driving behavior. Knowing this information can help design advance warning systems that increase driver safety and traffic efficiency. The model is first developed for a two-lane road segment where traffic conditions are simplified to reach an abstract formulation. It is then extended to cases with a higher number of lanes using the law of total probability. Finally, the model is used in two sample cases to illustrate its predictions and the effect of different parameters on the results.","PeriodicalId":394538,"journal":{"name":"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Estimating the Likelihood of Reaching a Road Target Using Multiple Lane Changes for Driver Assistance\",\"authors\":\"Goodarz Mehr, A. Eskandarian\",\"doi\":\"10.1109/ITSC45102.2020.9294674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a model to estimate the probability of reaching a target position on the road using multiple lane changes based on parameters corresponding to traffic flow and driving behavior. Knowing this information can help design advance warning systems that increase driver safety and traffic efficiency. The model is first developed for a two-lane road segment where traffic conditions are simplified to reach an abstract formulation. It is then extended to cases with a higher number of lanes using the law of total probability. Finally, the model is used in two sample cases to illustrate its predictions and the effect of different parameters on the results.\",\"PeriodicalId\":394538,\"journal\":{\"name\":\"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC45102.2020.9294674\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC45102.2020.9294674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于交通流和驾驶行为对应的参数,利用多变道来估计到达目标位置概率的模型。了解这些信息可以帮助设计提前预警系统,提高驾驶员的安全和交通效率。该模型首先针对两车道路段进行了建模,将路段的交通状况简化为抽象形式。然后,利用总概率定律将其扩展到具有更多车道数的情况。最后,通过两个实例说明了该模型的预测结果以及不同参数对结果的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating the Likelihood of Reaching a Road Target Using Multiple Lane Changes for Driver Assistance
This paper presents a model to estimate the probability of reaching a target position on the road using multiple lane changes based on parameters corresponding to traffic flow and driving behavior. Knowing this information can help design advance warning systems that increase driver safety and traffic efficiency. The model is first developed for a two-lane road segment where traffic conditions are simplified to reach an abstract formulation. It is then extended to cases with a higher number of lanes using the law of total probability. Finally, the model is used in two sample cases to illustrate its predictions and the effect of different parameters on the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信