带未解析测量的轨迹导向MHT

S. Coraluppi, C. Carthel
{"title":"带未解析测量的轨迹导向MHT","authors":"S. Coraluppi, C. Carthel","doi":"10.1109/SDF.2019.8916657","DOIUrl":null,"url":null,"abstract":"This paper first validates that the track-oriented multiple-hypothesis tracking recursion holds in the case of state-dependent detection probabilities, as is generally assumed. Next, we seek to extend the track-oriented multiple-hypothesis tracking recursion to allow for unresolved measurements. The formulation requires some simplifying assumptions, including an assumption that targets be resolved at birth and a restriction on the size of unresolved target clusters. The tracking recursion requires some approximation to admit track-oriented (factored) form, and leads to a nonlinear optimization problem. We discuss a multi-stage architecture that provides a simpler and more robust processing approach for practical settings.","PeriodicalId":186196,"journal":{"name":"2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Track-Oriented MHT with Unresolved Measurements\",\"authors\":\"S. Coraluppi, C. Carthel\",\"doi\":\"10.1109/SDF.2019.8916657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper first validates that the track-oriented multiple-hypothesis tracking recursion holds in the case of state-dependent detection probabilities, as is generally assumed. Next, we seek to extend the track-oriented multiple-hypothesis tracking recursion to allow for unresolved measurements. The formulation requires some simplifying assumptions, including an assumption that targets be resolved at birth and a restriction on the size of unresolved target clusters. The tracking recursion requires some approximation to admit track-oriented (factored) form, and leads to a nonlinear optimization problem. We discuss a multi-stage architecture that provides a simpler and more robust processing approach for practical settings.\",\"PeriodicalId\":186196,\"journal\":{\"name\":\"2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SDF.2019.8916657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDF.2019.8916657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文首先验证了轨迹导向的多假设跟踪递归在检测概率依赖于状态的情况下,如通常假设的那样成立。接下来,我们寻求扩展轨迹导向的多假设跟踪递归,以允许未解析的测量。该公式需要一些简化的假设,包括假设目标在出生时被解决,以及限制未解决的目标簇的大小。跟踪递归需要一定的近似才能实现面向跟踪的(因子)形式,从而导致非线性优化问题。我们讨论了一种多阶段架构,它为实际设置提供了一种更简单、更健壮的处理方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Track-Oriented MHT with Unresolved Measurements
This paper first validates that the track-oriented multiple-hypothesis tracking recursion holds in the case of state-dependent detection probabilities, as is generally assumed. Next, we seek to extend the track-oriented multiple-hypothesis tracking recursion to allow for unresolved measurements. The formulation requires some simplifying assumptions, including an assumption that targets be resolved at birth and a restriction on the size of unresolved target clusters. The tracking recursion requires some approximation to admit track-oriented (factored) form, and leads to a nonlinear optimization problem. We discuss a multi-stage architecture that provides a simpler and more robust processing approach for practical settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信