直接从人类演示中学习非线性动力系统的自适应到达技巧

Jie Chen, H. Lau
{"title":"直接从人类演示中学习非线性动力系统的自适应到达技巧","authors":"Jie Chen, H. Lau","doi":"10.1109/ARSO.2016.7736287","DOIUrl":null,"url":null,"abstract":"In this work, we first discuss details about a novel motion planning approach for robot point to point reaching tasks called stable estimator of dynamical systems (SEDS). A human operator first demonstrates reaching movements several times, and Gaussian Mixture Model and Gaussian Mixture Regression are used to roughly encode human demonstrations through a first order ordinary differential equation. Then based on Lyapunov Stability Theorem, a constrained nonlinear optimization problem is formulated to iteratively refine the previously learned differential model and SEDS is derived. Since during human demonstrations, the velocity is usually quite low which heavily restricts the kinetic capability of the robot, and sometimes we expect the robot to move more fast, such as to catch flying objects and to avoid fast moving obstacles. Therefore, it is extremely significant to develop a method to control the velocity and duration of the robot movement. In this paper, we define a nonlinear function based on the distance between the robot and the target to adjust the velocity of the robot. Experiments have been conducted in simulation environments to verify three properties of the proposed method, namely global asymptotical stability, adaptation to spatial perturbations and velocity controllability.","PeriodicalId":403924,"journal":{"name":"2016 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Learning adaptive reaching skills with nonlinear dynamical systems directly from human demonstrations\",\"authors\":\"Jie Chen, H. Lau\",\"doi\":\"10.1109/ARSO.2016.7736287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we first discuss details about a novel motion planning approach for robot point to point reaching tasks called stable estimator of dynamical systems (SEDS). A human operator first demonstrates reaching movements several times, and Gaussian Mixture Model and Gaussian Mixture Regression are used to roughly encode human demonstrations through a first order ordinary differential equation. Then based on Lyapunov Stability Theorem, a constrained nonlinear optimization problem is formulated to iteratively refine the previously learned differential model and SEDS is derived. Since during human demonstrations, the velocity is usually quite low which heavily restricts the kinetic capability of the robot, and sometimes we expect the robot to move more fast, such as to catch flying objects and to avoid fast moving obstacles. Therefore, it is extremely significant to develop a method to control the velocity and duration of the robot movement. In this paper, we define a nonlinear function based on the distance between the robot and the target to adjust the velocity of the robot. Experiments have been conducted in simulation environments to verify three properties of the proposed method, namely global asymptotical stability, adaptation to spatial perturbations and velocity controllability.\",\"PeriodicalId\":403924,\"journal\":{\"name\":\"2016 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARSO.2016.7736287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARSO.2016.7736287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项工作中,我们首先详细讨论了机器人点到点到达任务的一种新的运动规划方法,称为动态系统的稳定估计器(SEDS)。首先由人工操作者多次演示到达运动,然后利用高斯混合模型和高斯混合回归,通过一阶常微分方程对人工演示进行粗略编码。然后,基于李雅普诺夫稳定性定理,构造了一个约束非线性优化问题,对之前学习的微分模型进行迭代细化,并推导出SEDS。由于在人类演示期间,速度通常相当低,这严重限制了机器人的动力学能力,有时我们期望机器人移动得更快,例如捕捉飞行物体和避免快速移动的障碍物。因此,开发一种控制机器人运动速度和持续时间的方法具有十分重要的意义。在本文中,我们定义了一个基于机器人与目标之间距离的非线性函数来调节机器人的速度。仿真实验验证了该方法的全局渐近稳定性、空间摄动适应性和速度可控性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning adaptive reaching skills with nonlinear dynamical systems directly from human demonstrations
In this work, we first discuss details about a novel motion planning approach for robot point to point reaching tasks called stable estimator of dynamical systems (SEDS). A human operator first demonstrates reaching movements several times, and Gaussian Mixture Model and Gaussian Mixture Regression are used to roughly encode human demonstrations through a first order ordinary differential equation. Then based on Lyapunov Stability Theorem, a constrained nonlinear optimization problem is formulated to iteratively refine the previously learned differential model and SEDS is derived. Since during human demonstrations, the velocity is usually quite low which heavily restricts the kinetic capability of the robot, and sometimes we expect the robot to move more fast, such as to catch flying objects and to avoid fast moving obstacles. Therefore, it is extremely significant to develop a method to control the velocity and duration of the robot movement. In this paper, we define a nonlinear function based on the distance between the robot and the target to adjust the velocity of the robot. Experiments have been conducted in simulation environments to verify three properties of the proposed method, namely global asymptotical stability, adaptation to spatial perturbations and velocity controllability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信