利用主成分分析对气候数据进行有损压缩

Rachit Parikh, Nitin Sharma, Ankit Bansal
{"title":"利用主成分分析对气候数据进行有损压缩","authors":"Rachit Parikh, Nitin Sharma, Ankit Bansal","doi":"10.1109/ICNTE44896.2019.8945947","DOIUrl":null,"url":null,"abstract":"Enormous size of climate data has posed a difficulty in terms of storage since a long time. Principal Component Analysis is a well known method used for data compression. This paper gives a brief idea about the compression of climate data using Principal Component Analysis by modifying the data obtained from the weather station. A minor modification in handling data led to a high compression ratio. This compressed file can then be processed to retrieve the data again with a significant accuracy. The data obtained from the retrieval using compressed file almost matched the real time data.","PeriodicalId":292408,"journal":{"name":"2019 International Conference on Nascent Technologies in Engineering (ICNTE)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lossy compression of climate data using principal component analysis\",\"authors\":\"Rachit Parikh, Nitin Sharma, Ankit Bansal\",\"doi\":\"10.1109/ICNTE44896.2019.8945947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Enormous size of climate data has posed a difficulty in terms of storage since a long time. Principal Component Analysis is a well known method used for data compression. This paper gives a brief idea about the compression of climate data using Principal Component Analysis by modifying the data obtained from the weather station. A minor modification in handling data led to a high compression ratio. This compressed file can then be processed to retrieve the data again with a significant accuracy. The data obtained from the retrieval using compressed file almost matched the real time data.\",\"PeriodicalId\":292408,\"journal\":{\"name\":\"2019 International Conference on Nascent Technologies in Engineering (ICNTE)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Nascent Technologies in Engineering (ICNTE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNTE44896.2019.8945947\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Nascent Technologies in Engineering (ICNTE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNTE44896.2019.8945947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

长期以来,海量的气候数据给存储带来了困难。主成分分析是一种众所周知的用于数据压缩的方法。本文简要介绍了利用主成分分析方法对气象站数据进行压缩的方法。处理数据时的一个小改动导致了高压缩比。然后可以处理这个压缩文件,以非常准确的方式再次检索数据。压缩文件检索得到的数据与实时数据基本吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lossy compression of climate data using principal component analysis
Enormous size of climate data has posed a difficulty in terms of storage since a long time. Principal Component Analysis is a well known method used for data compression. This paper gives a brief idea about the compression of climate data using Principal Component Analysis by modifying the data obtained from the weather station. A minor modification in handling data led to a high compression ratio. This compressed file can then be processed to retrieve the data again with a significant accuracy. The data obtained from the retrieval using compressed file almost matched the real time data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信