树莓派基于视频的疼痛监测系统分析

Jhonatan Souza, Claudemir Casa, André Roberto Ortoncelli
{"title":"树莓派基于视频的疼痛监测系统分析","authors":"Jhonatan Souza, Claudemir Casa, André Roberto Ortoncelli","doi":"10.5753/wvc.2021.18913","DOIUrl":null,"url":null,"abstract":"This work presents an analysis of the efficiency and effectiveness of a Video-Based Pain Monitoring System running on a Raspberry selected because it is a cheap device that can be easily carried around. The objective of the evaluated system is to allow the assessment of pain based on two characteristics: Heart Rate (HR) and facial expressions detected through the Facial Action Coding System (FACS). To measure HR an Eulerian Video Magnification (EVM) based method was implemented. EVM is one of the main current approaches to measure HR by Remote PhotoPlethysmoGraphy. FACS was used to detect pain intensity with the Prkachin and Solomon Pain Intensity (PSPI) equation which is one of the most used approaches to detect pain intensity based on facial features. To identify the PSPI value we trained a Regression Neural Network (RNN) with the UNBC-McMaster database. The experimental results demonstrate the strengths and limitations of the evaluated system.","PeriodicalId":311431,"journal":{"name":"Anais do XVII Workshop de Visão Computacional (WVC 2021)","volume":"173 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of a Video-Based Pain Monitoring System in Raspberry Pi\",\"authors\":\"Jhonatan Souza, Claudemir Casa, André Roberto Ortoncelli\",\"doi\":\"10.5753/wvc.2021.18913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents an analysis of the efficiency and effectiveness of a Video-Based Pain Monitoring System running on a Raspberry selected because it is a cheap device that can be easily carried around. The objective of the evaluated system is to allow the assessment of pain based on two characteristics: Heart Rate (HR) and facial expressions detected through the Facial Action Coding System (FACS). To measure HR an Eulerian Video Magnification (EVM) based method was implemented. EVM is one of the main current approaches to measure HR by Remote PhotoPlethysmoGraphy. FACS was used to detect pain intensity with the Prkachin and Solomon Pain Intensity (PSPI) equation which is one of the most used approaches to detect pain intensity based on facial features. To identify the PSPI value we trained a Regression Neural Network (RNN) with the UNBC-McMaster database. The experimental results demonstrate the strengths and limitations of the evaluated system.\",\"PeriodicalId\":311431,\"journal\":{\"name\":\"Anais do XVII Workshop de Visão Computacional (WVC 2021)\",\"volume\":\"173 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XVII Workshop de Visão Computacional (WVC 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/wvc.2021.18913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XVII Workshop de Visão Computacional (WVC 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/wvc.2021.18913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

这项工作提出了一个基于视频的疼痛监测系统的效率和有效性的分析,选择在树莓上运行,因为它是一个便宜的设备,可以方便地随身携带。评估系统的目标是允许基于两个特征来评估疼痛:心率(HR)和面部表情,通过面部动作编码系统(FACS)检测。为了测量HR,采用了基于欧拉视频放大(EVM)的方法。EVM是目前远程光电容积描记法测量HR的主要方法之一。FACS采用Prkachin和Solomon疼痛强度(PSPI)方程检测疼痛强度,PSPI是基于面部特征检测疼痛强度最常用的方法之一。为了识别PSPI值,我们使用UNBC-McMaster数据库训练了一个回归神经网络(RNN)。实验结果表明了所评价系统的优点和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of a Video-Based Pain Monitoring System in Raspberry Pi
This work presents an analysis of the efficiency and effectiveness of a Video-Based Pain Monitoring System running on a Raspberry selected because it is a cheap device that can be easily carried around. The objective of the evaluated system is to allow the assessment of pain based on two characteristics: Heart Rate (HR) and facial expressions detected through the Facial Action Coding System (FACS). To measure HR an Eulerian Video Magnification (EVM) based method was implemented. EVM is one of the main current approaches to measure HR by Remote PhotoPlethysmoGraphy. FACS was used to detect pain intensity with the Prkachin and Solomon Pain Intensity (PSPI) equation which is one of the most used approaches to detect pain intensity based on facial features. To identify the PSPI value we trained a Regression Neural Network (RNN) with the UNBC-McMaster database. The experimental results demonstrate the strengths and limitations of the evaluated system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信