面向信息可视化的代码空间质量评价

Ying Zhu
{"title":"面向信息可视化的代码空间质量评价","authors":"Ying Zhu","doi":"10.1109/IV56949.2022.00029","DOIUrl":null,"url":null,"abstract":"The quality evaluation is essential to creating effective data visualization designs. The data visualization research community has produced many quality metrics for evaluating data visualization. However, these quality metrics are rarely integrated into popular data visualization tools. As a result, most data visualization creators are either not aware of these quality metrics or do not know how to apply these metrics to the visualization creation process. In this paper, we propose a novel quality evaluation method that integrates quality metrics into popular data visualization programming tools. Our main contribution is a code-space quality evaluation method, different from the traditional image-space or data-space quality evaluation method. Using our method, a visualization programmer passes a coded data visualization design to a quality evaluation function that generates warnings, comments, and design recommendations. This allows users to integrate quality checks into the design process.","PeriodicalId":153161,"journal":{"name":"2022 26th International Conference Information Visualisation (IV)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Code-Space Quality Evaluation for Information Visualization\",\"authors\":\"Ying Zhu\",\"doi\":\"10.1109/IV56949.2022.00029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The quality evaluation is essential to creating effective data visualization designs. The data visualization research community has produced many quality metrics for evaluating data visualization. However, these quality metrics are rarely integrated into popular data visualization tools. As a result, most data visualization creators are either not aware of these quality metrics or do not know how to apply these metrics to the visualization creation process. In this paper, we propose a novel quality evaluation method that integrates quality metrics into popular data visualization programming tools. Our main contribution is a code-space quality evaluation method, different from the traditional image-space or data-space quality evaluation method. Using our method, a visualization programmer passes a coded data visualization design to a quality evaluation function that generates warnings, comments, and design recommendations. This allows users to integrate quality checks into the design process.\",\"PeriodicalId\":153161,\"journal\":{\"name\":\"2022 26th International Conference Information Visualisation (IV)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 26th International Conference Information Visualisation (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IV56949.2022.00029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 26th International Conference Information Visualisation (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IV56949.2022.00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

质量评估对于创建有效的数据可视化设计至关重要。数据可视化研究团体已经产生了许多评估数据可视化的质量指标。然而,这些质量度量很少集成到流行的数据可视化工具中。因此,大多数数据可视化创建者要么不知道这些质量度量,要么不知道如何将这些度量应用到可视化创建过程中。在本文中,我们提出了一种新的质量评估方法,将质量度量集成到流行的数据可视化编程工具中。我们的主要贡献是一种代码空间质量评价方法,不同于传统的图像空间或数据空间质量评价方法。使用我们的方法,可视化程序员将编码的数据可视化设计传递给质量评估函数,该函数生成警告、注释和设计建议。这允许用户将质量检查集成到设计过程中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Code-Space Quality Evaluation for Information Visualization
The quality evaluation is essential to creating effective data visualization designs. The data visualization research community has produced many quality metrics for evaluating data visualization. However, these quality metrics are rarely integrated into popular data visualization tools. As a result, most data visualization creators are either not aware of these quality metrics or do not know how to apply these metrics to the visualization creation process. In this paper, we propose a novel quality evaluation method that integrates quality metrics into popular data visualization programming tools. Our main contribution is a code-space quality evaluation method, different from the traditional image-space or data-space quality evaluation method. Using our method, a visualization programmer passes a coded data visualization design to a quality evaluation function that generates warnings, comments, and design recommendations. This allows users to integrate quality checks into the design process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信