有限角度x射线断层扫描稀疏正则化的新框架

J. Frikel
{"title":"有限角度x射线断层扫描稀疏正则化的新框架","authors":"J. Frikel","doi":"10.1109/ISBI.2010.5490113","DOIUrl":null,"url":null,"abstract":"We propose a new framework for limited angle tomographic reconstruction. Our approach is based on the observation that for a given acquisition geometry only a few (visible) structures of the object can be reconstructed reliably using a limited angle data set. By formulating this problem in the curvelet domain, we can characterize those curvelet coefficients which correspond to visible structures in the image domain. The integration of this information into the formulation of the reconstruction problem leads to a considerable dimensionality reduction and yields a speedup of the corresponding reconstruction algorithms.","PeriodicalId":250523,"journal":{"name":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A new framework for sparse regularization in limited angle x-ray tomography\",\"authors\":\"J. Frikel\",\"doi\":\"10.1109/ISBI.2010.5490113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new framework for limited angle tomographic reconstruction. Our approach is based on the observation that for a given acquisition geometry only a few (visible) structures of the object can be reconstructed reliably using a limited angle data set. By formulating this problem in the curvelet domain, we can characterize those curvelet coefficients which correspond to visible structures in the image domain. The integration of this information into the formulation of the reconstruction problem leads to a considerable dimensionality reduction and yields a speedup of the corresponding reconstruction algorithms.\",\"PeriodicalId\":250523,\"journal\":{\"name\":\"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2010.5490113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2010.5490113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

我们提出了一种新的有限角度层析重建框架。我们的方法是基于这样的观察,即对于给定的采集几何,只有少数(可见)的物体结构可以使用有限的角度数据集可靠地重建。通过在曲线域中表述这个问题,我们可以在图像域中描述对应于可见结构的曲线系数。将这些信息整合到重建问题的公式中,可以大大降低维数,并提高相应重建算法的速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new framework for sparse regularization in limited angle x-ray tomography
We propose a new framework for limited angle tomographic reconstruction. Our approach is based on the observation that for a given acquisition geometry only a few (visible) structures of the object can be reconstructed reliably using a limited angle data set. By formulating this problem in the curvelet domain, we can characterize those curvelet coefficients which correspond to visible structures in the image domain. The integration of this information into the formulation of the reconstruction problem leads to a considerable dimensionality reduction and yields a speedup of the corresponding reconstruction algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信