表示布尔函数为Z/下标m/多项式的下界

Shi-Chun Tsai
{"title":"表示布尔函数为Z/下标m/多项式的下界","authors":"Shi-Chun Tsai","doi":"10.1109/SCT.1993.336537","DOIUrl":null,"url":null,"abstract":"The MOD/sub m/-degree of Boolean function F is defined to be the smallest degree of any polynomial P, over the ring of integers modulo m, such that for all 0-1 assignments x, F(x)=0 iff P(x)=0. By exploring the periodic property of the binomial coefficients module m, two new lower bounds on the MOD/sub m/-degree of the MOD/sub l/ and not-MOD/sub m/ functions are proved, where m is any composite integer and l has a prime factor not dividing m. Both bounds improve from n/sup Omega (1)/ in D.A.M. Barrington et al. (1992) to Omega (n). A lower bound, n/2, for the majority function and a lower bound, square root n, for the MidBit function are also proved.<<ETX>>","PeriodicalId":331616,"journal":{"name":"[1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference","volume":"209 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Lower bounds on representing Boolean functions as polynomials in Z/sub m/\",\"authors\":\"Shi-Chun Tsai\",\"doi\":\"10.1109/SCT.1993.336537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The MOD/sub m/-degree of Boolean function F is defined to be the smallest degree of any polynomial P, over the ring of integers modulo m, such that for all 0-1 assignments x, F(x)=0 iff P(x)=0. By exploring the periodic property of the binomial coefficients module m, two new lower bounds on the MOD/sub m/-degree of the MOD/sub l/ and not-MOD/sub m/ functions are proved, where m is any composite integer and l has a prime factor not dividing m. Both bounds improve from n/sup Omega (1)/ in D.A.M. Barrington et al. (1992) to Omega (n). A lower bound, n/2, for the majority function and a lower bound, square root n, for the MidBit function are also proved.<<ETX>>\",\"PeriodicalId\":331616,\"journal\":{\"name\":\"[1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference\",\"volume\":\"209 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCT.1993.336537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCT.1993.336537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

布尔函数F的MOD/sub m/-次被定义为任意多项式P在整数模m环上的最小次,使得对于所有0-1赋值x, F(x)=0,而P(x)=0。通过探索二项式系数的周期特性模块,两个新的下界国防部/子国防部/子l / m /度和not-MOD /子米/函数证明,其中m是任何复合整数和l '因素没有分裂m。范围提高从n /一口ω(1)/ D.A.M.巴林顿et al。(1992)ω(n)。一个下界,n / 2,对于大多数函数和一个下界,n的平方根,MidBit函数也证明。>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lower bounds on representing Boolean functions as polynomials in Z/sub m/
The MOD/sub m/-degree of Boolean function F is defined to be the smallest degree of any polynomial P, over the ring of integers modulo m, such that for all 0-1 assignments x, F(x)=0 iff P(x)=0. By exploring the periodic property of the binomial coefficients module m, two new lower bounds on the MOD/sub m/-degree of the MOD/sub l/ and not-MOD/sub m/ functions are proved, where m is any composite integer and l has a prime factor not dividing m. Both bounds improve from n/sup Omega (1)/ in D.A.M. Barrington et al. (1992) to Omega (n). A lower bound, n/2, for the majority function and a lower bound, square root n, for the MidBit function are also proved.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信