粘弹性型方程的H1-Galerkin混合有限元法

Hai-tao Che, Mei-xia Li
{"title":"粘弹性型方程的H1-Galerkin混合有限元法","authors":"Hai-tao Che, Mei-xia Li","doi":"10.1109/CASE.2009.40","DOIUrl":null,"url":null,"abstract":"In this paper, an H1-Galerkin mixed finite element method is proposed to simulate the viscoelasticity type equation. The problem is considered in n-dimentional (n-dimentional (n≪4) space, respective. The optimal error estimates are also established. In particular, our methods can simultaneously approximate the scalar unknown and the vector flux effectively, without requiring the LBB consistency condition.","PeriodicalId":294566,"journal":{"name":"2009 IITA International Conference on Control, Automation and Systems Engineering (case 2009)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"H1-Galerkin Mixed Finite Element Method for the Viscoelasticity Type Equation\",\"authors\":\"Hai-tao Che, Mei-xia Li\",\"doi\":\"10.1109/CASE.2009.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an H1-Galerkin mixed finite element method is proposed to simulate the viscoelasticity type equation. The problem is considered in n-dimentional (n-dimentional (n≪4) space, respective. The optimal error estimates are also established. In particular, our methods can simultaneously approximate the scalar unknown and the vector flux effectively, without requiring the LBB consistency condition.\",\"PeriodicalId\":294566,\"journal\":{\"name\":\"2009 IITA International Conference on Control, Automation and Systems Engineering (case 2009)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IITA International Conference on Control, Automation and Systems Engineering (case 2009)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CASE.2009.40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IITA International Conference on Control, Automation and Systems Engineering (case 2009)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE.2009.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种H1-Galerkin混合有限元法来模拟粘弹性型方程。这个问题分别是在n维(n≥4)空间中考虑的。建立了最优误差估计。特别是,我们的方法可以同时有效地逼近未知标量和矢量通量,而不需要LBB一致性条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
H1-Galerkin Mixed Finite Element Method for the Viscoelasticity Type Equation
In this paper, an H1-Galerkin mixed finite element method is proposed to simulate the viscoelasticity type equation. The problem is considered in n-dimentional (n-dimentional (n≪4) space, respective. The optimal error estimates are also established. In particular, our methods can simultaneously approximate the scalar unknown and the vector flux effectively, without requiring the LBB consistency condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信