骨架算法:顺序模式挖掘

M. Przybylek
{"title":"骨架算法:顺序模式挖掘","authors":"M. Przybylek","doi":"10.7763/IJCTE.2015.V7.944","DOIUrl":null,"url":null,"abstract":"The basic idea behind the skeletal algorithm is to express a problem in terms of congruences on a structure, build an initial set of congruences, and improve it by taking limited unions/intersections, until a suitable condition is reached. Skeletal algorithms naturally arise in the context of data/process mining, where the skeleton is the “free” structure on initial data and congruence corresponds to similarities in data. In this paper we study skeletal algorithms applied to sequential pattern mining and compare their performance with real models, Markov chains and models based on Shannon entropy.","PeriodicalId":306280,"journal":{"name":"International Journal of Computer Theory and Engineering","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Skeletal Algorithms: Sequential Pattern Mining\",\"authors\":\"M. Przybylek\",\"doi\":\"10.7763/IJCTE.2015.V7.944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The basic idea behind the skeletal algorithm is to express a problem in terms of congruences on a structure, build an initial set of congruences, and improve it by taking limited unions/intersections, until a suitable condition is reached. Skeletal algorithms naturally arise in the context of data/process mining, where the skeleton is the “free” structure on initial data and congruence corresponds to similarities in data. In this paper we study skeletal algorithms applied to sequential pattern mining and compare their performance with real models, Markov chains and models based on Shannon entropy.\",\"PeriodicalId\":306280,\"journal\":{\"name\":\"International Journal of Computer Theory and Engineering\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Theory and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7763/IJCTE.2015.V7.944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Theory and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7763/IJCTE.2015.V7.944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

骨架算法背后的基本思想是根据结构上的同余来表达问题,建立一个初始的同余集,并通过有限的并/交来改进它,直到达到合适的条件。骨架算法自然出现在数据/过程挖掘的背景下,其中骨架是初始数据上的“自由”结构,一致性对应于数据中的相似性。本文研究了骨架算法在序列模式挖掘中的应用,并将其与真实模型、马尔可夫链和基于香农熵的模型的性能进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Skeletal Algorithms: Sequential Pattern Mining
The basic idea behind the skeletal algorithm is to express a problem in terms of congruences on a structure, build an initial set of congruences, and improve it by taking limited unions/intersections, until a suitable condition is reached. Skeletal algorithms naturally arise in the context of data/process mining, where the skeleton is the “free” structure on initial data and congruence corresponds to similarities in data. In this paper we study skeletal algorithms applied to sequential pattern mining and compare their performance with real models, Markov chains and models based on Shannon entropy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信