基于MapReduce的覆盖模式挖掘

Akhil Ralla, Shadaab Siddiqie, P. K. Reddy, Anirban Mondal
{"title":"基于MapReduce的覆盖模式挖掘","authors":"Akhil Ralla, Shadaab Siddiqie, P. K. Reddy, Anirban Mondal","doi":"10.1145/3371158.3371188","DOIUrl":null,"url":null,"abstract":"Pattern mining is an important task of data mining and involves the extraction of interesting associations from large databases. However, developing fast and efficient parallel algorithms for handling large volumes of data is a challenging task. The MapReduce framework enables the distributed processing of huge amounts of data in large-scale distributed environment with robust fault-tolerance. In this paper, we propose a parallel algorithm for extracting coverage patterns. The results of our performance evaluation with real-world and synthetic datasets demonstrate that it is indeed feasible to extract coverage patterns effectively under the MapReduce framework.","PeriodicalId":360747,"journal":{"name":"Proceedings of the 7th ACM IKDD CoDS and 25th COMAD","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Coverage Pattern Mining Based on MapReduce\",\"authors\":\"Akhil Ralla, Shadaab Siddiqie, P. K. Reddy, Anirban Mondal\",\"doi\":\"10.1145/3371158.3371188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pattern mining is an important task of data mining and involves the extraction of interesting associations from large databases. However, developing fast and efficient parallel algorithms for handling large volumes of data is a challenging task. The MapReduce framework enables the distributed processing of huge amounts of data in large-scale distributed environment with robust fault-tolerance. In this paper, we propose a parallel algorithm for extracting coverage patterns. The results of our performance evaluation with real-world and synthetic datasets demonstrate that it is indeed feasible to extract coverage patterns effectively under the MapReduce framework.\",\"PeriodicalId\":360747,\"journal\":{\"name\":\"Proceedings of the 7th ACM IKDD CoDS and 25th COMAD\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th ACM IKDD CoDS and 25th COMAD\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3371158.3371188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th ACM IKDD CoDS and 25th COMAD","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3371158.3371188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

模式挖掘是数据挖掘的一项重要任务,涉及从大型数据库中提取有趣的关联。然而,开发快速高效的并行算法来处理大量数据是一项具有挑战性的任务。MapReduce框架支持大规模分布式环境下海量数据的分布式处理,具有强大的容错能力。本文提出了一种提取覆盖模式的并行算法。我们对真实世界和合成数据集的性能评估结果表明,在MapReduce框架下有效提取覆盖模式确实是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coverage Pattern Mining Based on MapReduce
Pattern mining is an important task of data mining and involves the extraction of interesting associations from large databases. However, developing fast and efficient parallel algorithms for handling large volumes of data is a challenging task. The MapReduce framework enables the distributed processing of huge amounts of data in large-scale distributed environment with robust fault-tolerance. In this paper, we propose a parallel algorithm for extracting coverage patterns. The results of our performance evaluation with real-world and synthetic datasets demonstrate that it is indeed feasible to extract coverage patterns effectively under the MapReduce framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信