接近最优的四边形/三角形细分曲面拟合

G. Lavoué, F. Dupont, A. Baskurt
{"title":"接近最优的四边形/三角形细分曲面拟合","authors":"G. Lavoué, F. Dupont, A. Baskurt","doi":"10.1109/3DIM.2005.78","DOIUrl":null,"url":null,"abstract":"In this paper we present a new framework for subdivision surface fitting of arbitrary surfaces (not closed objects) represented by polygonal meshes. Our approach is particularly suited for output surfaces from a mechanical or CAD object segmentation for a piecewise subdivision surface approximation. Our algorithm produces a mixed quadrangle-triangle control mesh, near optimal in terms of face and vertex numbers while remaining independent of the connectivity of the input mesh. The first step approximates the boundaries with subdivision curves and creates an initial subdivision surface by optimally linking the boundary control points with respect to the lines of curvature of the target surface. Then, a second step optimizes the initial control polyhedron by iteratively moving control points and enriching regions according to the error distribution. Experiments conducted on several surfaces and on a whole segmented mechanical object, have proven the coherency and the efficiency of our algorithm, compared with existing methods.","PeriodicalId":170883,"journal":{"name":"Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Toward a near optimal quad/triangle subdivision surface fitting\",\"authors\":\"G. Lavoué, F. Dupont, A. Baskurt\",\"doi\":\"10.1109/3DIM.2005.78\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a new framework for subdivision surface fitting of arbitrary surfaces (not closed objects) represented by polygonal meshes. Our approach is particularly suited for output surfaces from a mechanical or CAD object segmentation for a piecewise subdivision surface approximation. Our algorithm produces a mixed quadrangle-triangle control mesh, near optimal in terms of face and vertex numbers while remaining independent of the connectivity of the input mesh. The first step approximates the boundaries with subdivision curves and creates an initial subdivision surface by optimally linking the boundary control points with respect to the lines of curvature of the target surface. Then, a second step optimizes the initial control polyhedron by iteratively moving control points and enriching regions according to the error distribution. Experiments conducted on several surfaces and on a whole segmented mechanical object, have proven the coherency and the efficiency of our algorithm, compared with existing methods.\",\"PeriodicalId\":170883,\"journal\":{\"name\":\"Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DIM.2005.78\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DIM.2005.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种新的多边形网格表示任意曲面(非封闭物体)的细分曲面拟合框架。我们的方法特别适用于从机械或CAD对象分割的输出表面,用于分段细分表面近似。我们的算法产生一个混合四边形-三角形控制网格,在面和顶点数量方面接近最佳,同时保持独立于输入网格的连通性。第一步用细分曲线逼近边界,并通过将边界控制点相对于目标表面的曲率线进行最佳连接来创建初始细分表面。然后,第二步根据误差分布,通过迭代移动控制点和丰富区域来优化初始控制多面体。与现有方法相比,在多个表面和整个机械物体上进行的实验证明了该算法的一致性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward a near optimal quad/triangle subdivision surface fitting
In this paper we present a new framework for subdivision surface fitting of arbitrary surfaces (not closed objects) represented by polygonal meshes. Our approach is particularly suited for output surfaces from a mechanical or CAD object segmentation for a piecewise subdivision surface approximation. Our algorithm produces a mixed quadrangle-triangle control mesh, near optimal in terms of face and vertex numbers while remaining independent of the connectivity of the input mesh. The first step approximates the boundaries with subdivision curves and creates an initial subdivision surface by optimally linking the boundary control points with respect to the lines of curvature of the target surface. Then, a second step optimizes the initial control polyhedron by iteratively moving control points and enriching regions according to the error distribution. Experiments conducted on several surfaces and on a whole segmented mechanical object, have proven the coherency and the efficiency of our algorithm, compared with existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信