{"title":"大规模救灾应急物流调度的多目标进化算法","authors":"Xiaohui Gan, Jing Liu","doi":"10.1109/CEC.2017.7969295","DOIUrl":null,"url":null,"abstract":"The emergency logistics scheduling (ELS) is to enable the dispatch of emergency supplies to the victims of disasters timely and effectively, which plays a crucial role in large-scale disaster relief. In this paper, we first design a new multi-objective model that considers both the total unsatisfied time and transportation cost for the ELS problem in large-scale disaster relief (ELSP-LDR), which is on the scenery of multi-disasters and multi-suppliers with several kinds of resources and vehicles. Then, a modified non-dominated sorting genetic algorithm II (mNSGA-II) is proposed to search for a variety of optimal emergency scheduling plans for decision-makers. With the intrinsic properties of ELSP-LDR in mind, we design three repair operators to generate improved feasible solutions. Compared with the original NSGA-II, a local search operator is also designed for mNSGA-II, which significantly improves the performance. We conduct two experiments (the case of Chi-Chi earthquake and Great Sichuan Earthquake) to validate the performance of the proposed algorithm.","PeriodicalId":335123,"journal":{"name":"2017 IEEE Congress on Evolutionary Computation (CEC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A multi-objective evolutionary algorithm for emergency logistics scheduling in large-scale disaster relief\",\"authors\":\"Xiaohui Gan, Jing Liu\",\"doi\":\"10.1109/CEC.2017.7969295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emergency logistics scheduling (ELS) is to enable the dispatch of emergency supplies to the victims of disasters timely and effectively, which plays a crucial role in large-scale disaster relief. In this paper, we first design a new multi-objective model that considers both the total unsatisfied time and transportation cost for the ELS problem in large-scale disaster relief (ELSP-LDR), which is on the scenery of multi-disasters and multi-suppliers with several kinds of resources and vehicles. Then, a modified non-dominated sorting genetic algorithm II (mNSGA-II) is proposed to search for a variety of optimal emergency scheduling plans for decision-makers. With the intrinsic properties of ELSP-LDR in mind, we design three repair operators to generate improved feasible solutions. Compared with the original NSGA-II, a local search operator is also designed for mNSGA-II, which significantly improves the performance. We conduct two experiments (the case of Chi-Chi earthquake and Great Sichuan Earthquake) to validate the performance of the proposed algorithm.\",\"PeriodicalId\":335123,\"journal\":{\"name\":\"2017 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2017.7969295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2017.7969295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A multi-objective evolutionary algorithm for emergency logistics scheduling in large-scale disaster relief
The emergency logistics scheduling (ELS) is to enable the dispatch of emergency supplies to the victims of disasters timely and effectively, which plays a crucial role in large-scale disaster relief. In this paper, we first design a new multi-objective model that considers both the total unsatisfied time and transportation cost for the ELS problem in large-scale disaster relief (ELSP-LDR), which is on the scenery of multi-disasters and multi-suppliers with several kinds of resources and vehicles. Then, a modified non-dominated sorting genetic algorithm II (mNSGA-II) is proposed to search for a variety of optimal emergency scheduling plans for decision-makers. With the intrinsic properties of ELSP-LDR in mind, we design three repair operators to generate improved feasible solutions. Compared with the original NSGA-II, a local search operator is also designed for mNSGA-II, which significantly improves the performance. We conduct two experiments (the case of Chi-Chi earthquake and Great Sichuan Earthquake) to validate the performance of the proposed algorithm.