M. Chiarella, D. Fay, A. Waxman, R. Ivey, N. Bomberger
{"title":"多传感器图像融合与挖掘:从神经系统到COTS软件及其在遥感AFE中的应用","authors":"M. Chiarella, D. Fay, A. Waxman, R. Ivey, N. Bomberger","doi":"10.1109/WARSD.2003.1295180","DOIUrl":null,"url":null,"abstract":"We summarize our methods for the fusion of multisensor/spectral imagery based on concepts derived from neural models of visual processing (adaptive contrast enhancement, opponent-color contrast, multi-scale contour completion, and multi-scale texture enhancement) and semi-supervised pattern learning and recognition. These methods have been applied to the problem of aided feature extraction (AFE) from remote sensing airborne multispectral and hyperspectral imaging systems, and space-based multi-platform multi-modality imaging sensors. The methods enable color fused 3D visualization, as well as interactive exploitation and data mining in the form of human-guided machine learning and search for objects, landcover, and cultural features. This technology has been evaluated on space-based imagery for the National Imagery and Mapping Agency, and real-time implementation has also been demonstrated for terrestrial fused-color night imaging. We have recently incorporated these methods into a commercial software platform (ERDAS Imagine) for imagery exploitation. We describe the approach and user interfaces, and show results for a variety of sensor systems with application to remote sensing feature extraction including EO/IR/MSI/SAR imagery from Landsat and Radarsat, multispectral Ikonos imagery, and Hyperion and HyMap hyperspectral imagery.","PeriodicalId":395735,"journal":{"name":"IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multisensor image fusion and mining: from neural systems to COTS software with application to remote sensing AFE\",\"authors\":\"M. Chiarella, D. Fay, A. Waxman, R. Ivey, N. Bomberger\",\"doi\":\"10.1109/WARSD.2003.1295180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We summarize our methods for the fusion of multisensor/spectral imagery based on concepts derived from neural models of visual processing (adaptive contrast enhancement, opponent-color contrast, multi-scale contour completion, and multi-scale texture enhancement) and semi-supervised pattern learning and recognition. These methods have been applied to the problem of aided feature extraction (AFE) from remote sensing airborne multispectral and hyperspectral imaging systems, and space-based multi-platform multi-modality imaging sensors. The methods enable color fused 3D visualization, as well as interactive exploitation and data mining in the form of human-guided machine learning and search for objects, landcover, and cultural features. This technology has been evaluated on space-based imagery for the National Imagery and Mapping Agency, and real-time implementation has also been demonstrated for terrestrial fused-color night imaging. We have recently incorporated these methods into a commercial software platform (ERDAS Imagine) for imagery exploitation. We describe the approach and user interfaces, and show results for a variety of sensor systems with application to remote sensing feature extraction including EO/IR/MSI/SAR imagery from Landsat and Radarsat, multispectral Ikonos imagery, and Hyperion and HyMap hyperspectral imagery.\",\"PeriodicalId\":395735,\"journal\":{\"name\":\"IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WARSD.2003.1295180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WARSD.2003.1295180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multisensor image fusion and mining: from neural systems to COTS software with application to remote sensing AFE
We summarize our methods for the fusion of multisensor/spectral imagery based on concepts derived from neural models of visual processing (adaptive contrast enhancement, opponent-color contrast, multi-scale contour completion, and multi-scale texture enhancement) and semi-supervised pattern learning and recognition. These methods have been applied to the problem of aided feature extraction (AFE) from remote sensing airborne multispectral and hyperspectral imaging systems, and space-based multi-platform multi-modality imaging sensors. The methods enable color fused 3D visualization, as well as interactive exploitation and data mining in the form of human-guided machine learning and search for objects, landcover, and cultural features. This technology has been evaluated on space-based imagery for the National Imagery and Mapping Agency, and real-time implementation has also been demonstrated for terrestrial fused-color night imaging. We have recently incorporated these methods into a commercial software platform (ERDAS Imagine) for imagery exploitation. We describe the approach and user interfaces, and show results for a variety of sensor systems with application to remote sensing feature extraction including EO/IR/MSI/SAR imagery from Landsat and Radarsat, multispectral Ikonos imagery, and Hyperion and HyMap hyperspectral imagery.