基于无监督光谱回归和Gabor滤波器组的SAR图像分割

G. Akbarizadeh, Z. Tirandaz
{"title":"基于无监督光谱回归和Gabor滤波器组的SAR图像分割","authors":"G. Akbarizadeh, Z. Tirandaz","doi":"10.1109/IKT.2015.7288780","DOIUrl":null,"url":null,"abstract":"Segmentation of synthetic aperture radar (SAR) is a challenge topic in recent years. Many statistical and structural methods have been proposed for this goal. Some of them are based on clustering, such as the sparse spectral clustering and Nyström method. These methods suffer from the low speed and high computational complexity because of the use of the eigen-decomposition in their algorithm. In this paper, we proposed an unsupervised feature learning method in which the features of different areas of SAR images are extracted, and then they will be learned using an unsupervised manner and finally the learned features will be clustered. The proposed algorithm improved the accuracy compared with other methods and it also has a shorter run time.","PeriodicalId":338953,"journal":{"name":"2015 7th Conference on Information and Knowledge Technology (IKT)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"SAR image segmentation using unsupervised spectral regression and Gabor filter bank\",\"authors\":\"G. Akbarizadeh, Z. Tirandaz\",\"doi\":\"10.1109/IKT.2015.7288780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Segmentation of synthetic aperture radar (SAR) is a challenge topic in recent years. Many statistical and structural methods have been proposed for this goal. Some of them are based on clustering, such as the sparse spectral clustering and Nyström method. These methods suffer from the low speed and high computational complexity because of the use of the eigen-decomposition in their algorithm. In this paper, we proposed an unsupervised feature learning method in which the features of different areas of SAR images are extracted, and then they will be learned using an unsupervised manner and finally the learned features will be clustered. The proposed algorithm improved the accuracy compared with other methods and it also has a shorter run time.\",\"PeriodicalId\":338953,\"journal\":{\"name\":\"2015 7th Conference on Information and Knowledge Technology (IKT)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th Conference on Information and Knowledge Technology (IKT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IKT.2015.7288780\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th Conference on Information and Knowledge Technology (IKT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IKT.2015.7288780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

合成孔径雷达(SAR)的分割是近年来研究的热点问题。为此提出了许多统计和结构方法。其中一些方法是基于聚类的,如稀疏谱聚类和Nyström方法。这些方法由于在算法中使用了特征分解,存在速度慢、计算量大的问题。本文提出了一种无监督特征学习方法,该方法首先提取SAR图像中不同区域的特征,然后采用无监督的方式进行特征学习,最后对学习到的特征进行聚类。与其他方法相比,该算法提高了精度,并且运行时间更短。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SAR image segmentation using unsupervised spectral regression and Gabor filter bank
Segmentation of synthetic aperture radar (SAR) is a challenge topic in recent years. Many statistical and structural methods have been proposed for this goal. Some of them are based on clustering, such as the sparse spectral clustering and Nyström method. These methods suffer from the low speed and high computational complexity because of the use of the eigen-decomposition in their algorithm. In this paper, we proposed an unsupervised feature learning method in which the features of different areas of SAR images are extracted, and then they will be learned using an unsupervised manner and finally the learned features will be clustered. The proposed algorithm improved the accuracy compared with other methods and it also has a shorter run time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信