差分私有多方计算

P. Kairouz, Sewoong Oh, P. Viswanath
{"title":"差分私有多方计算","authors":"P. Kairouz, Sewoong Oh, P. Viswanath","doi":"10.1109/CISS.2016.7460489","DOIUrl":null,"url":null,"abstract":"We study the problem of multi-party computation under approximate (ε,δ) differential privacy. We assume an interactive setting with k parties, each possessing a private bit. Each party wants to compute a function defined on all the parties' bits. Differential privacy ensures that there remains uncertainty in any party's bit even when given the transcript of interactions and all the other parties' bits. This paper is a follow up to our work, where we studied multi-party computation under (ε, 0) differential privacy. We generalize the results and prove that a simple non-interactive randomized response mechanism is optimal. Our optimality result holds for all privacy levels (all values of ε and δ), heterogenous privacy levels across parties, all types of functions to be computed, all types of cost metrics, and both average and worst-case (over the inputs) measures of accuracy.","PeriodicalId":346776,"journal":{"name":"2016 Annual Conference on Information Science and Systems (CISS)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Differentially private multi-party computation\",\"authors\":\"P. Kairouz, Sewoong Oh, P. Viswanath\",\"doi\":\"10.1109/CISS.2016.7460489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of multi-party computation under approximate (ε,δ) differential privacy. We assume an interactive setting with k parties, each possessing a private bit. Each party wants to compute a function defined on all the parties' bits. Differential privacy ensures that there remains uncertainty in any party's bit even when given the transcript of interactions and all the other parties' bits. This paper is a follow up to our work, where we studied multi-party computation under (ε, 0) differential privacy. We generalize the results and prove that a simple non-interactive randomized response mechanism is optimal. Our optimality result holds for all privacy levels (all values of ε and δ), heterogenous privacy levels across parties, all types of functions to be computed, all types of cost metrics, and both average and worst-case (over the inputs) measures of accuracy.\",\"PeriodicalId\":346776,\"journal\":{\"name\":\"2016 Annual Conference on Information Science and Systems (CISS)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Annual Conference on Information Science and Systems (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS.2016.7460489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Annual Conference on Information Science and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2016.7460489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

研究了近似(ε,δ)差分隐私下的多方计算问题。我们假设一个有k个参与方的互动环境,每个参与方都有一个私人比特。每一方都想计算一个定义在所有各方比特上的函数。差异隐私确保了任何一方的比特仍然存在不确定性,即使给定了交互记录和所有其他方的比特。本文是我们工作的后续,我们研究了(ε, 0)差分隐私下的多方计算。我们推广了结果,证明了一个简单的非交互随机响应机制是最优的。我们的最优性结果适用于所有隐私级别(所有ε和δ值)、各方的异质隐私级别、所有要计算的函数类型、所有类型的成本指标,以及平均和最坏情况(超过输入)的准确性度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differentially private multi-party computation
We study the problem of multi-party computation under approximate (ε,δ) differential privacy. We assume an interactive setting with k parties, each possessing a private bit. Each party wants to compute a function defined on all the parties' bits. Differential privacy ensures that there remains uncertainty in any party's bit even when given the transcript of interactions and all the other parties' bits. This paper is a follow up to our work, where we studied multi-party computation under (ε, 0) differential privacy. We generalize the results and prove that a simple non-interactive randomized response mechanism is optimal. Our optimality result holds for all privacy levels (all values of ε and δ), heterogenous privacy levels across parties, all types of functions to be computed, all types of cost metrics, and both average and worst-case (over the inputs) measures of accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信