情感检测中语音特征组效率的确定

G. Polat, H. Altun
{"title":"情感检测中语音特征组效率的确定","authors":"G. Polat, H. Altun","doi":"10.1109/SIU.2007.4298582","DOIUrl":null,"url":null,"abstract":"Features, extract from speech parameter are frequently used in emotion detection problem. Prosodic, MFCC, LPC and band energy feature groups are commonly used in literature to detect emotion in speech. The aim of the study is to examine the efficiency of these features groups in emotion detection problem using a SVM classifier.","PeriodicalId":315147,"journal":{"name":"2007 IEEE 15th Signal Processing and Communications Applications","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Determining Efficiency of Speech Feature Groups in Emotion Detection\",\"authors\":\"G. Polat, H. Altun\",\"doi\":\"10.1109/SIU.2007.4298582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Features, extract from speech parameter are frequently used in emotion detection problem. Prosodic, MFCC, LPC and band energy feature groups are commonly used in literature to detect emotion in speech. The aim of the study is to examine the efficiency of these features groups in emotion detection problem using a SVM classifier.\",\"PeriodicalId\":315147,\"journal\":{\"name\":\"2007 IEEE 15th Signal Processing and Communications Applications\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE 15th Signal Processing and Communications Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2007.4298582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 15th Signal Processing and Communications Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2007.4298582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

从语音参数中提取特征是情感检测中经常用到的问题。文献中常用韵律特征组、MFCC特征组、LPC特征组和频带能量特征组来检测语音中的情感。本研究的目的是检验这些特征组在使用支持向量机分类器的情感检测问题中的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determining Efficiency of Speech Feature Groups in Emotion Detection
Features, extract from speech parameter are frequently used in emotion detection problem. Prosodic, MFCC, LPC and band energy feature groups are commonly used in literature to detect emotion in speech. The aim of the study is to examine the efficiency of these features groups in emotion detection problem using a SVM classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信