流数据的实时推荐

F. Hopfgartner, B. Kille, Tobias Heintz, R. Turrin
{"title":"流数据的实时推荐","authors":"F. Hopfgartner, B. Kille, Tobias Heintz, R. Turrin","doi":"10.1145/2792838.2792839","DOIUrl":null,"url":null,"abstract":"This tutorial addressed two trending topics in the field of recommender systems research, namely A/B testing and real-time recommendations of streamed data. Focusing on the news domain, participants learned how to benchmark the performance of stream-based recommendation algorithms in a live recommender system and in a simulated environment.","PeriodicalId":325637,"journal":{"name":"Proceedings of the 9th ACM Conference on Recommender Systems","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Real-time Recommendation of Streamed Data\",\"authors\":\"F. Hopfgartner, B. Kille, Tobias Heintz, R. Turrin\",\"doi\":\"10.1145/2792838.2792839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This tutorial addressed two trending topics in the field of recommender systems research, namely A/B testing and real-time recommendations of streamed data. Focusing on the news domain, participants learned how to benchmark the performance of stream-based recommendation algorithms in a live recommender system and in a simulated environment.\",\"PeriodicalId\":325637,\"journal\":{\"name\":\"Proceedings of the 9th ACM Conference on Recommender Systems\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th ACM Conference on Recommender Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2792838.2792839\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2792838.2792839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本教程讨论了推荐系统研究领域的两个趋势主题,即A/B测试和流数据的实时推荐。以新闻领域为重点,参与者学习了如何在实时推荐系统和模拟环境中对基于流的推荐算法的性能进行基准测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time Recommendation of Streamed Data
This tutorial addressed two trending topics in the field of recommender systems research, namely A/B testing and real-time recommendations of streamed data. Focusing on the news domain, participants learned how to benchmark the performance of stream-based recommendation algorithms in a live recommender system and in a simulated environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信