F. Hopfgartner, B. Kille, Tobias Heintz, R. Turrin
{"title":"流数据的实时推荐","authors":"F. Hopfgartner, B. Kille, Tobias Heintz, R. Turrin","doi":"10.1145/2792838.2792839","DOIUrl":null,"url":null,"abstract":"This tutorial addressed two trending topics in the field of recommender systems research, namely A/B testing and real-time recommendations of streamed data. Focusing on the news domain, participants learned how to benchmark the performance of stream-based recommendation algorithms in a live recommender system and in a simulated environment.","PeriodicalId":325637,"journal":{"name":"Proceedings of the 9th ACM Conference on Recommender Systems","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Real-time Recommendation of Streamed Data\",\"authors\":\"F. Hopfgartner, B. Kille, Tobias Heintz, R. Turrin\",\"doi\":\"10.1145/2792838.2792839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This tutorial addressed two trending topics in the field of recommender systems research, namely A/B testing and real-time recommendations of streamed data. Focusing on the news domain, participants learned how to benchmark the performance of stream-based recommendation algorithms in a live recommender system and in a simulated environment.\",\"PeriodicalId\":325637,\"journal\":{\"name\":\"Proceedings of the 9th ACM Conference on Recommender Systems\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th ACM Conference on Recommender Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2792838.2792839\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2792838.2792839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This tutorial addressed two trending topics in the field of recommender systems research, namely A/B testing and real-time recommendations of streamed data. Focusing on the news domain, participants learned how to benchmark the performance of stream-based recommendation algorithms in a live recommender system and in a simulated environment.