大字符集识别中的误差界估计与特征选择

Xiao Huang, Yuo-Shou Wu, Xiaoqing Ding
{"title":"大字符集识别中的误差界估计与特征选择","authors":"Xiao Huang, Yuo-Shou Wu, Xiaoqing Ding","doi":"10.1109/ICPR.1988.28482","DOIUrl":null,"url":null,"abstract":"Based on the reduction of entropy, the analysis of the estimation of error bounds is discussed. This estimation is simple in computation and is associated with a scatter matrix of classes. For the case of a large character set, a novel definition of separability of classes is proposed. It is simple in computation and can be used to evaluate error bounds and to choose a subset of features with minimum loss of information.<<ETX>>","PeriodicalId":314236,"journal":{"name":"[1988 Proceedings] 9th International Conference on Pattern Recognition","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The estimation of error bounds and feature selection in large character set recognition\",\"authors\":\"Xiao Huang, Yuo-Shou Wu, Xiaoqing Ding\",\"doi\":\"10.1109/ICPR.1988.28482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the reduction of entropy, the analysis of the estimation of error bounds is discussed. This estimation is simple in computation and is associated with a scatter matrix of classes. For the case of a large character set, a novel definition of separability of classes is proposed. It is simple in computation and can be used to evaluate error bounds and to choose a subset of features with minimum loss of information.<<ETX>>\",\"PeriodicalId\":314236,\"journal\":{\"name\":\"[1988 Proceedings] 9th International Conference on Pattern Recognition\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1988 Proceedings] 9th International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.1988.28482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1988 Proceedings] 9th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.1988.28482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在熵约化的基础上,讨论了误差界估计的分析。这种估计计算简单,并与类的散点矩阵相关联。针对大字符集的情况,提出了类可分性的新定义。它计算简单,可用于评估误差边界,并选择具有最小信息损失的特征子集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The estimation of error bounds and feature selection in large character set recognition
Based on the reduction of entropy, the analysis of the estimation of error bounds is discussed. This estimation is simple in computation and is associated with a scatter matrix of classes. For the case of a large character set, a novel definition of separability of classes is proposed. It is simple in computation and can be used to evaluate error bounds and to choose a subset of features with minimum loss of information.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信