FCLNN:基于OpenCL和Caffe的FPGA快速CNN原型设计的灵活框架

Xianchao Xu, Brian Liu
{"title":"FCLNN:基于OpenCL和Caffe的FPGA快速CNN原型设计的灵活框架","authors":"Xianchao Xu, Brian Liu","doi":"10.1109/FPT.2018.00043","DOIUrl":null,"url":null,"abstract":"The CNN algorithms are still in rapid evolution, while the traditional RTL level programming on FPGA is relatively slow and requires great efforts and expertise. In this paper, we propose a flexible HW/SW co-design framework for both fast and high-throughput CNN prototyping with commercial high-level OpenCL language and the standard open-source deep learning framework Caffe. We build up a parameterizable stream-architected convolution engine and extend it to support any input size and filter depth. For iterative development process, we provide both layer-based and subgraph-based execution schedule. While for competitive performance, both on-chip and off-chip communication are optimized. Using our framework with Intel Arria 10 GX1150 FPGA, we achieve 69.2 fps and 18.6 fps on official YOLOv2-tiny-voc and YOLOv2-voc respectively. To the best of our knowledge, this is the first work to accelerate the state-of-the-art YOLOv2 with both real-time performance and < 1% accuracy drop on FPGA.","PeriodicalId":434541,"journal":{"name":"2018 International Conference on Field-Programmable Technology (FPT)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"FCLNN: A Flexible Framework for Fast CNN Prototyping on FPGA with OpenCL and Caffe\",\"authors\":\"Xianchao Xu, Brian Liu\",\"doi\":\"10.1109/FPT.2018.00043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The CNN algorithms are still in rapid evolution, while the traditional RTL level programming on FPGA is relatively slow and requires great efforts and expertise. In this paper, we propose a flexible HW/SW co-design framework for both fast and high-throughput CNN prototyping with commercial high-level OpenCL language and the standard open-source deep learning framework Caffe. We build up a parameterizable stream-architected convolution engine and extend it to support any input size and filter depth. For iterative development process, we provide both layer-based and subgraph-based execution schedule. While for competitive performance, both on-chip and off-chip communication are optimized. Using our framework with Intel Arria 10 GX1150 FPGA, we achieve 69.2 fps and 18.6 fps on official YOLOv2-tiny-voc and YOLOv2-voc respectively. To the best of our knowledge, this is the first work to accelerate the state-of-the-art YOLOv2 with both real-time performance and < 1% accuracy drop on FPGA.\",\"PeriodicalId\":434541,\"journal\":{\"name\":\"2018 International Conference on Field-Programmable Technology (FPT)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Field-Programmable Technology (FPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPT.2018.00043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Field-Programmable Technology (FPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2018.00043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

CNN算法仍处于快速发展阶段,而传统的FPGA RTL级编程速度相对较慢,需要大量的努力和专业知识。在本文中,我们提出了一个灵活的硬件/软件协同设计框架,用于使用商业高级OpenCL语言和标准开源深度学习框架Caffe进行快速和高吞吐量的CNN原型设计。我们建立了一个可参数化的流架构卷积引擎,并将其扩展到支持任何输入大小和过滤深度。对于迭代开发过程,我们提供了基于层和基于子图的执行计划。而对于竞争性能,片内和片外通信都进行了优化。使用我们的框架和Intel Arria 10 GX1150 FPGA,我们分别在官方的YOLOv2-tiny-voc和YOLOv2-voc上实现了69.2 fps和18.6 fps。据我们所知,这是第一个加速最先进的YOLOv2的工作,在FPGA上实现实时性能和小于1%的精度下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FCLNN: A Flexible Framework for Fast CNN Prototyping on FPGA with OpenCL and Caffe
The CNN algorithms are still in rapid evolution, while the traditional RTL level programming on FPGA is relatively slow and requires great efforts and expertise. In this paper, we propose a flexible HW/SW co-design framework for both fast and high-throughput CNN prototyping with commercial high-level OpenCL language and the standard open-source deep learning framework Caffe. We build up a parameterizable stream-architected convolution engine and extend it to support any input size and filter depth. For iterative development process, we provide both layer-based and subgraph-based execution schedule. While for competitive performance, both on-chip and off-chip communication are optimized. Using our framework with Intel Arria 10 GX1150 FPGA, we achieve 69.2 fps and 18.6 fps on official YOLOv2-tiny-voc and YOLOv2-voc respectively. To the best of our knowledge, this is the first work to accelerate the state-of-the-art YOLOv2 with both real-time performance and < 1% accuracy drop on FPGA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信