适当动作的等变索引II:性质和应用

P. Hochs, Yanli Song
{"title":"适当动作的等变索引II:性质和应用","authors":"P. Hochs, Yanli Song","doi":"10.4171/JNCG/273","DOIUrl":null,"url":null,"abstract":"In the first part of this series, we defined an equivariant index without assuming the group acting or the orbit space of the action to be compact. This allowed us to generalise an index of deformed Dirac operators, defined for compact groups by Braverman. In this paper, we investigate properties and applications of this index. We prove that it has an induction property that can be used to deduce various other properties of the index. In the case of compact orbit spaces, we show how it is related to the analytic assembly map from the Baum-Connes conjecture, and an index used by Mathai and Zhang. We use the index to define a notion of K-homological Dirac induction, and show that, under conditions, it satisfies the quantisation commutes with reduction principle.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"An equivariant index for proper actions II: properties and applications\",\"authors\":\"P. Hochs, Yanli Song\",\"doi\":\"10.4171/JNCG/273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the first part of this series, we defined an equivariant index without assuming the group acting or the orbit space of the action to be compact. This allowed us to generalise an index of deformed Dirac operators, defined for compact groups by Braverman. In this paper, we investigate properties and applications of this index. We prove that it has an induction property that can be used to deduce various other properties of the index. In the case of compact orbit spaces, we show how it is related to the analytic assembly map from the Baum-Connes conjecture, and an index used by Mathai and Zhang. We use the index to define a notion of K-homological Dirac induction, and show that, under conditions, it satisfies the quantisation commutes with reduction principle.\",\"PeriodicalId\":309711,\"journal\":{\"name\":\"arXiv: K-Theory and Homology\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/JNCG/273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/JNCG/273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在本系列的第一部分中,我们定义了一个等变指标,而不假设群作用或作用的轨道空间是紧的。这允许我们推广变形狄拉克算子的一个指标,由布雷弗曼为紧群定义。本文研究了该指标的性质及其应用。我们证明了它具有归纳性质,可以用来推导指标的各种其他性质。在紧化轨道空间的情况下,我们展示了它是如何与Baum-Connes猜想的解析装配映射以及Mathai和Zhang使用的一个指标相关联的。利用该指标定义了k -同调狄拉克归纳的概念,并证明在一定条件下,它满足量化交换与约简原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An equivariant index for proper actions II: properties and applications
In the first part of this series, we defined an equivariant index without assuming the group acting or the orbit space of the action to be compact. This allowed us to generalise an index of deformed Dirac operators, defined for compact groups by Braverman. In this paper, we investigate properties and applications of this index. We prove that it has an induction property that can be used to deduce various other properties of the index. In the case of compact orbit spaces, we show how it is related to the analytic assembly map from the Baum-Connes conjecture, and an index used by Mathai and Zhang. We use the index to define a notion of K-homological Dirac induction, and show that, under conditions, it satisfies the quantisation commutes with reduction principle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信