{"title":"适当动作的等变索引II:性质和应用","authors":"P. Hochs, Yanli Song","doi":"10.4171/JNCG/273","DOIUrl":null,"url":null,"abstract":"In the first part of this series, we defined an equivariant index without assuming the group acting or the orbit space of the action to be compact. This allowed us to generalise an index of deformed Dirac operators, defined for compact groups by Braverman. In this paper, we investigate properties and applications of this index. We prove that it has an induction property that can be used to deduce various other properties of the index. In the case of compact orbit spaces, we show how it is related to the analytic assembly map from the Baum-Connes conjecture, and an index used by Mathai and Zhang. We use the index to define a notion of K-homological Dirac induction, and show that, under conditions, it satisfies the quantisation commutes with reduction principle.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"An equivariant index for proper actions II: properties and applications\",\"authors\":\"P. Hochs, Yanli Song\",\"doi\":\"10.4171/JNCG/273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the first part of this series, we defined an equivariant index without assuming the group acting or the orbit space of the action to be compact. This allowed us to generalise an index of deformed Dirac operators, defined for compact groups by Braverman. In this paper, we investigate properties and applications of this index. We prove that it has an induction property that can be used to deduce various other properties of the index. In the case of compact orbit spaces, we show how it is related to the analytic assembly map from the Baum-Connes conjecture, and an index used by Mathai and Zhang. We use the index to define a notion of K-homological Dirac induction, and show that, under conditions, it satisfies the quantisation commutes with reduction principle.\",\"PeriodicalId\":309711,\"journal\":{\"name\":\"arXiv: K-Theory and Homology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/JNCG/273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/JNCG/273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An equivariant index for proper actions II: properties and applications
In the first part of this series, we defined an equivariant index without assuming the group acting or the orbit space of the action to be compact. This allowed us to generalise an index of deformed Dirac operators, defined for compact groups by Braverman. In this paper, we investigate properties and applications of this index. We prove that it has an induction property that can be used to deduce various other properties of the index. In the case of compact orbit spaces, we show how it is related to the analytic assembly map from the Baum-Connes conjecture, and an index used by Mathai and Zhang. We use the index to define a notion of K-homological Dirac induction, and show that, under conditions, it satisfies the quantisation commutes with reduction principle.