Tzu-Chi Huang, Kuo-Chih Chu, Guo-Hao Huang, Yan-Chen Shen, C. Shieh
{"title":"基于云计算的MapReduce计算能力演绎体系","authors":"Tzu-Chi Huang, Kuo-Chih Chu, Guo-Hao Huang, Yan-Chen Shen, C. Shieh","doi":"10.1109/PDCAT.2017.00067","DOIUrl":null,"url":null,"abstract":"MapReduce gradually becomes the de facto programming standard of applications on cloud computing. However, MapReduce needs a cloud administrator to manually configure parameters of the run-time system such as slot numbers for Map and Reduce tasks in order to get the best performance. Because the manual configuration has a risk of performance degradation, MapReduce should utilize the Computation Capability Deduction Architecture (CCDA) proposed in this paper to avoid the risk. MapReduce can use CCDA to help the run-time system to distribute appropriate numbers of tasks over computers in a cloud at run time without any manual configuration made by a cloud administrator. According to experiment observations in this paper, MapReduce can get great performance improvement with the help of CCDA in data-intensive applications such as Inverted Index and Word Count that are usually required to process big data on cloud computing.","PeriodicalId":119197,"journal":{"name":"2017 18th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computation Capability Deduction Architecture for MapReduce on Cloud Computing\",\"authors\":\"Tzu-Chi Huang, Kuo-Chih Chu, Guo-Hao Huang, Yan-Chen Shen, C. Shieh\",\"doi\":\"10.1109/PDCAT.2017.00067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MapReduce gradually becomes the de facto programming standard of applications on cloud computing. However, MapReduce needs a cloud administrator to manually configure parameters of the run-time system such as slot numbers for Map and Reduce tasks in order to get the best performance. Because the manual configuration has a risk of performance degradation, MapReduce should utilize the Computation Capability Deduction Architecture (CCDA) proposed in this paper to avoid the risk. MapReduce can use CCDA to help the run-time system to distribute appropriate numbers of tasks over computers in a cloud at run time without any manual configuration made by a cloud administrator. According to experiment observations in this paper, MapReduce can get great performance improvement with the help of CCDA in data-intensive applications such as Inverted Index and Word Count that are usually required to process big data on cloud computing.\",\"PeriodicalId\":119197,\"journal\":{\"name\":\"2017 18th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 18th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDCAT.2017.00067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 18th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDCAT.2017.00067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computation Capability Deduction Architecture for MapReduce on Cloud Computing
MapReduce gradually becomes the de facto programming standard of applications on cloud computing. However, MapReduce needs a cloud administrator to manually configure parameters of the run-time system such as slot numbers for Map and Reduce tasks in order to get the best performance. Because the manual configuration has a risk of performance degradation, MapReduce should utilize the Computation Capability Deduction Architecture (CCDA) proposed in this paper to avoid the risk. MapReduce can use CCDA to help the run-time system to distribute appropriate numbers of tasks over computers in a cloud at run time without any manual configuration made by a cloud administrator. According to experiment observations in this paper, MapReduce can get great performance improvement with the help of CCDA in data-intensive applications such as Inverted Index and Word Count that are usually required to process big data on cloud computing.