发展Web文档聚类的文档特征:可行性研究

M. P. Sinka, D. Corne
{"title":"发展Web文档聚类的文档特征:可行性研究","authors":"M. P. Sinka, D. Corne","doi":"10.1109/CEC.2004.1330955","DOIUrl":null,"url":null,"abstract":"Document analysis and its associated research underpins Web intelligence and the envisaged 'semantic Web'. A key issue is how to encode a document without losing salient information. Current research almost always uses fixed-length vectors based on word (term) frequency (TF) and/or variants thereof. We explore the question of alternative encodings, and we search for such encodings using an evolutionary algorithm (EA). These alternatives consider a variety of other features that can be extracted from a document, and the EA explores the space of weighted combinations of these. Tests on the BankSearch dataset were able to find encodings which outperformed previous results using TF-based encodings. Among several tentative findings it seems clear that the ideal encoding is highly task-dependent, and we can recommend certain features as useful for specific types of document clustering tasks.","PeriodicalId":152088,"journal":{"name":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Evolving document features for Web document clustering: a feasibility study\",\"authors\":\"M. P. Sinka, D. Corne\",\"doi\":\"10.1109/CEC.2004.1330955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Document analysis and its associated research underpins Web intelligence and the envisaged 'semantic Web'. A key issue is how to encode a document without losing salient information. Current research almost always uses fixed-length vectors based on word (term) frequency (TF) and/or variants thereof. We explore the question of alternative encodings, and we search for such encodings using an evolutionary algorithm (EA). These alternatives consider a variety of other features that can be extracted from a document, and the EA explores the space of weighted combinations of these. Tests on the BankSearch dataset were able to find encodings which outperformed previous results using TF-based encodings. Among several tentative findings it seems clear that the ideal encoding is highly task-dependent, and we can recommend certain features as useful for specific types of document clustering tasks.\",\"PeriodicalId\":152088,\"journal\":{\"name\":\"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2004.1330955\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2004.1330955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

文档分析及其相关研究是网络智能和设想中的“语义网”的基础。一个关键问题是如何在不丢失重要信息的情况下对文档进行编码。目前的研究几乎总是使用基于词(项)频率(TF)和/或其变体的固定长度向量。我们探索了替代编码的问题,并使用进化算法(EA)搜索这样的编码。这些替代方案考虑了可以从文档中提取的各种其他特征,EA探索了这些特征的加权组合空间。对BankSearch数据集的测试能够找到优于先前使用基于tf的编码结果的编码。在几个初步的发现中,很明显理想的编码是高度依赖于任务的,我们可以为特定类型的文档聚类任务推荐一些有用的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolving document features for Web document clustering: a feasibility study
Document analysis and its associated research underpins Web intelligence and the envisaged 'semantic Web'. A key issue is how to encode a document without losing salient information. Current research almost always uses fixed-length vectors based on word (term) frequency (TF) and/or variants thereof. We explore the question of alternative encodings, and we search for such encodings using an evolutionary algorithm (EA). These alternatives consider a variety of other features that can be extracted from a document, and the EA explores the space of weighted combinations of these. Tests on the BankSearch dataset were able to find encodings which outperformed previous results using TF-based encodings. Among several tentative findings it seems clear that the ideal encoding is highly task-dependent, and we can recommend certain features as useful for specific types of document clustering tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信