在线、机载进化机器人的评估时间控制

A. Arif, D. Nedev, E. Haasdijk
{"title":"在线、机载进化机器人的评估时间控制","authors":"A. Arif, D. Nedev, E. Haasdijk","doi":"10.1109/EAIS.2013.6604109","DOIUrl":null,"url":null,"abstract":"In this paper, we evaluate parameter control techniques for on-line and on-board evolutionary robotics. The devised approach augments an algorithm for on-line controller adaptation ((μ+1) ON-LINE) with a scheme for dynamic control of the evaluation time (τmax). We measure the performance of the approach in experiments that combine Fast-Forward and Temperature-Driven Fast-Forward tasks. The results with preselected optimal static evolution time are compared to those where τmax is dynamically controlled using a number of different control schemes. The experiments show that the devised approaches for parameter control can improve the performance of robots as the controller adapts to changes in the environment or task objective. A dynamic τmax-selection also eliminates the need to tune this parameter prior to deployment, letting the evolutionary process control the evaluation time of each robot controller depending on the current task and environment.","PeriodicalId":289995,"journal":{"name":"2013 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Controlling evaluation duration in On-line, on-board evolutionary robotics\",\"authors\":\"A. Arif, D. Nedev, E. Haasdijk\",\"doi\":\"10.1109/EAIS.2013.6604109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we evaluate parameter control techniques for on-line and on-board evolutionary robotics. The devised approach augments an algorithm for on-line controller adaptation ((μ+1) ON-LINE) with a scheme for dynamic control of the evaluation time (τmax). We measure the performance of the approach in experiments that combine Fast-Forward and Temperature-Driven Fast-Forward tasks. The results with preselected optimal static evolution time are compared to those where τmax is dynamically controlled using a number of different control schemes. The experiments show that the devised approaches for parameter control can improve the performance of robots as the controller adapts to changes in the environment or task objective. A dynamic τmax-selection also eliminates the need to tune this parameter prior to deployment, letting the evolutionary process control the evaluation time of each robot controller depending on the current task and environment.\",\"PeriodicalId\":289995,\"journal\":{\"name\":\"2013 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EAIS.2013.6604109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EAIS.2013.6604109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们评估了在线和机载进化机器人的参数控制技术。该方法对在线控制器自适应算法((μ+1) online)进行了扩充,并提出了评估时间(τmax)的动态控制方案。我们在结合快进和温度驱动的快进任务的实验中测量了该方法的性能。将预先选择最优静态演化时间的结果与使用多种不同控制方案动态控制τmax的结果进行了比较。实验表明,所设计的参数控制方法可以使控制器适应环境或任务目标的变化,从而提高机器人的性能。动态τ最大选择也消除了在部署前调整该参数的需要,使进化过程根据当前任务和环境控制每个机器人控制器的评估时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Controlling evaluation duration in On-line, on-board evolutionary robotics
In this paper, we evaluate parameter control techniques for on-line and on-board evolutionary robotics. The devised approach augments an algorithm for on-line controller adaptation ((μ+1) ON-LINE) with a scheme for dynamic control of the evaluation time (τmax). We measure the performance of the approach in experiments that combine Fast-Forward and Temperature-Driven Fast-Forward tasks. The results with preselected optimal static evolution time are compared to those where τmax is dynamically controlled using a number of different control schemes. The experiments show that the devised approaches for parameter control can improve the performance of robots as the controller adapts to changes in the environment or task objective. A dynamic τmax-selection also eliminates the need to tune this parameter prior to deployment, letting the evolutionary process control the evaluation time of each robot controller depending on the current task and environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信