基于决策模板的分类器融合心电脉搏分类

Atena Sajedin, R. Ebrahimpour, Tahmoures Younesi Garousi
{"title":"基于决策模板的分类器融合心电脉搏分类","authors":"Atena Sajedin, R. Ebrahimpour, Tahmoures Younesi Garousi","doi":"10.1109/CIS.2011.6169127","DOIUrl":null,"url":null,"abstract":"This paper presents a ”Decision Templates” (DTs) approach to develop customized Electrocardiogram (ECG) beat classifier in an effort to further improve the performance of ECG classification. Taking advantage of the Un-decimated Wavelet Transform (UWT), which also serves as a tool for noise reduction, we extracted 10 ECG morphological, as well as one timing interval features. For classification we have used a number of diverse MLPs neural networks as the base classifiers that are trained by Back Propagation algorithm. Then we employed and compared different combination methods. Tested with MIT/BIH arrhythmia database, we observe significant performance enhancement using this approach.","PeriodicalId":286889,"journal":{"name":"2011 IEEE 10th International Conference on Cybernetic Intelligent Systems (CIS)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Electrocardiogram beat classification using classifier fusion based on Decision Templates\",\"authors\":\"Atena Sajedin, R. Ebrahimpour, Tahmoures Younesi Garousi\",\"doi\":\"10.1109/CIS.2011.6169127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a ”Decision Templates” (DTs) approach to develop customized Electrocardiogram (ECG) beat classifier in an effort to further improve the performance of ECG classification. Taking advantage of the Un-decimated Wavelet Transform (UWT), which also serves as a tool for noise reduction, we extracted 10 ECG morphological, as well as one timing interval features. For classification we have used a number of diverse MLPs neural networks as the base classifiers that are trained by Back Propagation algorithm. Then we employed and compared different combination methods. Tested with MIT/BIH arrhythmia database, we observe significant performance enhancement using this approach.\",\"PeriodicalId\":286889,\"journal\":{\"name\":\"2011 IEEE 10th International Conference on Cybernetic Intelligent Systems (CIS)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 10th International Conference on Cybernetic Intelligent Systems (CIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS.2011.6169127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 10th International Conference on Cybernetic Intelligent Systems (CIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2011.6169127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为了进一步提高心电分类的性能,本文提出了一种“决策模板”(Decision Templates, DTs)方法来开发定制的心电(ECG)心跳分类器。利用非抽取小波变换(UWT)作为降噪工具,我们提取了10个ECG形态学特征和1个定时间隔特征。对于分类,我们使用了许多不同的mlp神经网络作为基础分类器,这些分类器是通过反向传播算法训练的。然后采用并比较了不同的组合方法。通过MIT/BIH心律失常数据库的测试,我们观察到使用这种方法可以显著提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrocardiogram beat classification using classifier fusion based on Decision Templates
This paper presents a ”Decision Templates” (DTs) approach to develop customized Electrocardiogram (ECG) beat classifier in an effort to further improve the performance of ECG classification. Taking advantage of the Un-decimated Wavelet Transform (UWT), which also serves as a tool for noise reduction, we extracted 10 ECG morphological, as well as one timing interval features. For classification we have used a number of diverse MLPs neural networks as the base classifiers that are trained by Back Propagation algorithm. Then we employed and compared different combination methods. Tested with MIT/BIH arrhythmia database, we observe significant performance enhancement using this approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信