面向压缩感知与重构的感知矩阵设计

H B Sharanabasaveshwara, Santosh M. Herur
{"title":"面向压缩感知与重构的感知矩阵设计","authors":"H B Sharanabasaveshwara, Santosh M. Herur","doi":"10.1109/ICAECC.2018.8479466","DOIUrl":null,"url":null,"abstract":"The compressive sampling technique is an emerging sampling technique that reconstructs a sparse signal at sub-Nyquist rate. One of the concerns in compression sensing is design of sensing matrix. While random sensing matrix are widely in use, they have many disadvantages. In this paper a novel Deterministic Random Sensing Matrix is designed and tested on image of size 256 × 256. The result shows 24% improvement in reconstruction time over Random Sensing Matrix. Since the matrix is deterministic the storage requirement is less than the Random Sensing Matrix.","PeriodicalId":106991,"journal":{"name":"2018 Second International Conference on Advances in Electronics, Computers and Communications (ICAECC)","volume":"352 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Designing of Sensing Matrix for Compressive Sensing and Reconstruction\",\"authors\":\"H B Sharanabasaveshwara, Santosh M. Herur\",\"doi\":\"10.1109/ICAECC.2018.8479466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The compressive sampling technique is an emerging sampling technique that reconstructs a sparse signal at sub-Nyquist rate. One of the concerns in compression sensing is design of sensing matrix. While random sensing matrix are widely in use, they have many disadvantages. In this paper a novel Deterministic Random Sensing Matrix is designed and tested on image of size 256 × 256. The result shows 24% improvement in reconstruction time over Random Sensing Matrix. Since the matrix is deterministic the storage requirement is less than the Random Sensing Matrix.\",\"PeriodicalId\":106991,\"journal\":{\"name\":\"2018 Second International Conference on Advances in Electronics, Computers and Communications (ICAECC)\",\"volume\":\"352 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Second International Conference on Advances in Electronics, Computers and Communications (ICAECC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAECC.2018.8479466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Second International Conference on Advances in Electronics, Computers and Communications (ICAECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAECC.2018.8479466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

压缩采样技术是一种新兴的采样技术,它以亚奈奎斯特速率重建稀疏信号。压缩感知中的一个问题是感知矩阵的设计。随机传感矩阵在得到广泛应用的同时,也存在许多缺点。本文设计了一种新的确定性随机感知矩阵,并在256 × 256的图像上进行了测试。结果表明,与随机感知矩阵相比,重构时间提高24%。由于矩阵是确定性的,因此存储需求小于随机感知矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing of Sensing Matrix for Compressive Sensing and Reconstruction
The compressive sampling technique is an emerging sampling technique that reconstructs a sparse signal at sub-Nyquist rate. One of the concerns in compression sensing is design of sensing matrix. While random sensing matrix are widely in use, they have many disadvantages. In this paper a novel Deterministic Random Sensing Matrix is designed and tested on image of size 256 × 256. The result shows 24% improvement in reconstruction time over Random Sensing Matrix. Since the matrix is deterministic the storage requirement is less than the Random Sensing Matrix.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信