光子噪声受限图像的局部反演模型

M. Sonnleitner, J. Jeffers, S. Barnett
{"title":"光子噪声受限图像的局部反演模型","authors":"M. Sonnleitner, J. Jeffers, S. Barnett","doi":"10.1117/12.2224444","DOIUrl":null,"url":null,"abstract":"Imaging technologies working at very low light levels acquire data by attempting to count the number of photons impinging on each pixel. Especially in cases with, on average, less than one photocount per pixel the resulting images are heavily corrupted by Poissonian noise and a host of successful algorithms trying to reconstruct the original image from this noisy data have been developed. Here we review a recently proposed scheme that complements these algorithms by calculating the full probability distribution for the local intensity distribution behind the noisy photocount measurements. Such a probabilistic treatment opens the way to hypothesis testing and confidence levels for conclusions drawn from image analysis.","PeriodicalId":285152,"journal":{"name":"SPIE Photonics Europe","volume":"245 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Local retrodiction models for photon-noise-limited images\",\"authors\":\"M. Sonnleitner, J. Jeffers, S. Barnett\",\"doi\":\"10.1117/12.2224444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Imaging technologies working at very low light levels acquire data by attempting to count the number of photons impinging on each pixel. Especially in cases with, on average, less than one photocount per pixel the resulting images are heavily corrupted by Poissonian noise and a host of successful algorithms trying to reconstruct the original image from this noisy data have been developed. Here we review a recently proposed scheme that complements these algorithms by calculating the full probability distribution for the local intensity distribution behind the noisy photocount measurements. Such a probabilistic treatment opens the way to hypothesis testing and confidence levels for conclusions drawn from image analysis.\",\"PeriodicalId\":285152,\"journal\":{\"name\":\"SPIE Photonics Europe\",\"volume\":\"245 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Photonics Europe\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2224444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Photonics Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2224444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在非常低的光照水平下工作的成像技术通过尝试计算撞击每个像素的光子数量来获取数据。特别是在平均每像素少于一个光计数的情况下,得到的图像被泊松噪声严重损坏,并且已经开发了许多成功的算法,试图从这些噪声数据中重建原始图像。在这里,我们回顾了最近提出的一种方案,该方案通过计算噪声光计数测量后局部强度分布的全概率分布来补充这些算法。这种概率处理为从图像分析中得出结论的假设检验和置信度水平开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local retrodiction models for photon-noise-limited images
Imaging technologies working at very low light levels acquire data by attempting to count the number of photons impinging on each pixel. Especially in cases with, on average, less than one photocount per pixel the resulting images are heavily corrupted by Poissonian noise and a host of successful algorithms trying to reconstruct the original image from this noisy data have been developed. Here we review a recently proposed scheme that complements these algorithms by calculating the full probability distribution for the local intensity distribution behind the noisy photocount measurements. Such a probabilistic treatment opens the way to hypothesis testing and confidence levels for conclusions drawn from image analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信