加速神经网络激活函数在FPGA上的高效实现

Kai Qian, Yinqiu Liu, Zexu Zhang, Kun Wang
{"title":"加速神经网络激活函数在FPGA上的高效实现","authors":"Kai Qian, Yinqiu Liu, Zexu Zhang, Kun Wang","doi":"10.1109/ISCAS46773.2023.10181406","DOIUrl":null,"url":null,"abstract":"In this paper, we present the Integer Lightweight Softmax (ILS) algorithm for approximating the Softmax activation function. The accurate implementation of Softmax on FPGA can be huge resource-intensive and memory-hungry. Then, we present the implementation of ILS on a Xilinx XCKU040 FPGA to evaluate the effectiveness of ILS. Evaluations on CIFAR 10, CIFAR 100 and ImageNet show that ILS achieves up to $2.47\\times, 40\\times$ and $323\\times$ speedup over CPU implementation, and $4\\times, 63\\times$ and $51\\times$ speedup over GPU implementation, respectively. In comparison to previous FPGA-based Softmax implementations, ILS strikes a better balance between resource consumption and precision accuracy.","PeriodicalId":177320,"journal":{"name":"2023 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Implementation of Activation Function on FPGA for Accelerating Neural Networks\",\"authors\":\"Kai Qian, Yinqiu Liu, Zexu Zhang, Kun Wang\",\"doi\":\"10.1109/ISCAS46773.2023.10181406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present the Integer Lightweight Softmax (ILS) algorithm for approximating the Softmax activation function. The accurate implementation of Softmax on FPGA can be huge resource-intensive and memory-hungry. Then, we present the implementation of ILS on a Xilinx XCKU040 FPGA to evaluate the effectiveness of ILS. Evaluations on CIFAR 10, CIFAR 100 and ImageNet show that ILS achieves up to $2.47\\\\times, 40\\\\times$ and $323\\\\times$ speedup over CPU implementation, and $4\\\\times, 63\\\\times$ and $51\\\\times$ speedup over GPU implementation, respectively. In comparison to previous FPGA-based Softmax implementations, ILS strikes a better balance between resource consumption and precision accuracy.\",\"PeriodicalId\":177320,\"journal\":{\"name\":\"2023 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS46773.2023.10181406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS46773.2023.10181406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种近似Softmax激活函数的整数轻量级Softmax (ILS)算法。Softmax在FPGA上的精确实现可能是巨大的资源密集型和内存消耗。然后,我们在Xilinx XCKU040 FPGA上实现了ILS,以评估ILS的有效性。在CIFAR 10、CIFAR 100和ImageNet上的评估表明,ILS比CPU实现的加速分别达到2.47倍、40倍和323倍,比GPU实现的加速分别达到4倍、63倍和51倍。与以前基于fpga的Softmax实现相比,ILS在资源消耗和精度精度之间取得了更好的平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Implementation of Activation Function on FPGA for Accelerating Neural Networks
In this paper, we present the Integer Lightweight Softmax (ILS) algorithm for approximating the Softmax activation function. The accurate implementation of Softmax on FPGA can be huge resource-intensive and memory-hungry. Then, we present the implementation of ILS on a Xilinx XCKU040 FPGA to evaluate the effectiveness of ILS. Evaluations on CIFAR 10, CIFAR 100 and ImageNet show that ILS achieves up to $2.47\times, 40\times$ and $323\times$ speedup over CPU implementation, and $4\times, 63\times$ and $51\times$ speedup over GPU implementation, respectively. In comparison to previous FPGA-based Softmax implementations, ILS strikes a better balance between resource consumption and precision accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信