利用半监督标签传播处理脑电数据流的延迟标记

Hayder K. Fatlawi, A. Kiss
{"title":"利用半监督标签传播处理脑电数据流的延迟标记","authors":"Hayder K. Fatlawi, A. Kiss","doi":"10.1109/ECAI58194.2023.10193922","DOIUrl":null,"url":null,"abstract":"Research interest in data stream classification is increasing through the development of adaptive machine learning techniques. These techniques involve continuously adjusting the classification model in response to changes in the data distribution. Most of these techniques assume instance labeling for the classes to perform the model adapting process, and this assumption is rare with actual data. This work proposes using a semi-supervised label propagation technique to infer many delayed labels (considered missing values) from limited known values in a data stream. The work's implementation included using two imbalanced EEG datasets, CUB-MIT Scalp and Siena Scalp datasets, to evaluate the proposed method with various values for missing ratios. The results showed the proposed method's ability to recover all the negative class values in both datasets with a missing percentage reaching 70%. Due to the rare positive class, the recovery of its value decreased with more than 30% missing ratio.","PeriodicalId":391483,"journal":{"name":"2023 15th International Conference on Electronics, Computers and Artificial Intelligence (ECAI)","volume":"168 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Handling Delayed Labeling of EEG Data Stream Using Semi-Supervised Label Propagation\",\"authors\":\"Hayder K. Fatlawi, A. Kiss\",\"doi\":\"10.1109/ECAI58194.2023.10193922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Research interest in data stream classification is increasing through the development of adaptive machine learning techniques. These techniques involve continuously adjusting the classification model in response to changes in the data distribution. Most of these techniques assume instance labeling for the classes to perform the model adapting process, and this assumption is rare with actual data. This work proposes using a semi-supervised label propagation technique to infer many delayed labels (considered missing values) from limited known values in a data stream. The work's implementation included using two imbalanced EEG datasets, CUB-MIT Scalp and Siena Scalp datasets, to evaluate the proposed method with various values for missing ratios. The results showed the proposed method's ability to recover all the negative class values in both datasets with a missing percentage reaching 70%. Due to the rare positive class, the recovery of its value decreased with more than 30% missing ratio.\",\"PeriodicalId\":391483,\"journal\":{\"name\":\"2023 15th International Conference on Electronics, Computers and Artificial Intelligence (ECAI)\",\"volume\":\"168 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 15th International Conference on Electronics, Computers and Artificial Intelligence (ECAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECAI58194.2023.10193922\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 15th International Conference on Electronics, Computers and Artificial Intelligence (ECAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECAI58194.2023.10193922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着自适应机器学习技术的发展,对数据流分类的研究兴趣日益浓厚。这些技术涉及根据数据分布的变化不断调整分类模型。这些技术中的大多数都假定为类进行实例标记以执行模型适应过程,而这种假设在实际数据中很少出现。这项工作提出使用半监督标签传播技术从数据流中有限的已知值推断出许多延迟标签(被认为是缺失值)。该工作的实现包括使用两个不平衡的EEG数据集,即ub - mit头皮和Siena头皮数据集,以不同的缺失比值评估所提出的方法。结果表明,该方法能够恢复两个数据集中的所有负类值,缺失率达到70%。由于正极稀有,其价值的回收率下降,缺失率超过30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Handling Delayed Labeling of EEG Data Stream Using Semi-Supervised Label Propagation
Research interest in data stream classification is increasing through the development of adaptive machine learning techniques. These techniques involve continuously adjusting the classification model in response to changes in the data distribution. Most of these techniques assume instance labeling for the classes to perform the model adapting process, and this assumption is rare with actual data. This work proposes using a semi-supervised label propagation technique to infer many delayed labels (considered missing values) from limited known values in a data stream. The work's implementation included using two imbalanced EEG datasets, CUB-MIT Scalp and Siena Scalp datasets, to evaluate the proposed method with various values for missing ratios. The results showed the proposed method's ability to recover all the negative class values in both datasets with a missing percentage reaching 70%. Due to the rare positive class, the recovery of its value decreased with more than 30% missing ratio.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信