{"title":"仿生硬件冗余网络结构中的自组织和容错行为方法","authors":"C. Szász, V. Chindris","doi":"10.1109/INES.2010.5483818","DOIUrl":null,"url":null,"abstract":"It's well-known, biological organisms offer the ability to grow with fault-tolerance and self-organization behaviors. By adapting basic properties and capabilities from nature, scientific approaches have helped researches understand related phenomena and associated with principles to engine complex novel digital systems and improve their capability. Founded by these observations, the paper is focused on modeling and simulation artificial embryonic structures, with the purpose to develop VLSI hardware architectures able to imitate cells or organism operation mode, with similar robustness like their biological equivalents from nature. Self-healing algorithms and artificial immune properties implementation is investigated and experimented on the developed models. The presented theoretical and simulation approaches were tested on a FPGA-based embryonic network architecture (embryonic machine), built with the purpose to implement on silicon fault-tolerant and surviving properties of living organisms.","PeriodicalId":118326,"journal":{"name":"2010 IEEE 14th International Conference on Intelligent Engineering Systems","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Self-organizing and fault-tolerant behaviors approach in bio-inspired hardware redundant network structures\",\"authors\":\"C. Szász, V. Chindris\",\"doi\":\"10.1109/INES.2010.5483818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It's well-known, biological organisms offer the ability to grow with fault-tolerance and self-organization behaviors. By adapting basic properties and capabilities from nature, scientific approaches have helped researches understand related phenomena and associated with principles to engine complex novel digital systems and improve their capability. Founded by these observations, the paper is focused on modeling and simulation artificial embryonic structures, with the purpose to develop VLSI hardware architectures able to imitate cells or organism operation mode, with similar robustness like their biological equivalents from nature. Self-healing algorithms and artificial immune properties implementation is investigated and experimented on the developed models. The presented theoretical and simulation approaches were tested on a FPGA-based embryonic network architecture (embryonic machine), built with the purpose to implement on silicon fault-tolerant and surviving properties of living organisms.\",\"PeriodicalId\":118326,\"journal\":{\"name\":\"2010 IEEE 14th International Conference on Intelligent Engineering Systems\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 14th International Conference on Intelligent Engineering Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INES.2010.5483818\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 14th International Conference on Intelligent Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INES.2010.5483818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Self-organizing and fault-tolerant behaviors approach in bio-inspired hardware redundant network structures
It's well-known, biological organisms offer the ability to grow with fault-tolerance and self-organization behaviors. By adapting basic properties and capabilities from nature, scientific approaches have helped researches understand related phenomena and associated with principles to engine complex novel digital systems and improve their capability. Founded by these observations, the paper is focused on modeling and simulation artificial embryonic structures, with the purpose to develop VLSI hardware architectures able to imitate cells or organism operation mode, with similar robustness like their biological equivalents from nature. Self-healing algorithms and artificial immune properties implementation is investigated and experimented on the developed models. The presented theoretical and simulation approaches were tested on a FPGA-based embryonic network architecture (embryonic machine), built with the purpose to implement on silicon fault-tolerant and surviving properties of living organisms.