纵向加劲、充液的圆柱壳在液体中的振动

N. Alizadeh
{"title":"纵向加劲、充液的圆柱壳在液体中的振动","authors":"N. Alizadeh","doi":"10.15421/4220020","DOIUrl":null,"url":null,"abstract":"In the paper we study free vibrations of a longitudinally stiffened, viscous liquid-filled orthotropic cylindrical shell in ideal liquid. The Navier – Stokеs linearized equation is used to describe the motion of the internal viscous liquid, the motion of the external liquid is described by a wave equation written in the potential by perturbed velocity. Frequency equation of a longitudinally stiffened orthotropic, viscous liquid-contacting cylindrical shell is obtained on the basis of the Hamilton – Ostrogradsky principle of stationarity of action. Characteristic curves of dependence are constructed.","PeriodicalId":340024,"journal":{"name":"Проблеми обчислювальної механіки і міцності конструкцій","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VIBRATIONS OF A LONGITUDINALLY STIFFENED, LIQUID-FILLED CYLINDRICAL SHELL IN LIQUID\",\"authors\":\"N. Alizadeh\",\"doi\":\"10.15421/4220020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper we study free vibrations of a longitudinally stiffened, viscous liquid-filled orthotropic cylindrical shell in ideal liquid. The Navier – Stokеs linearized equation is used to describe the motion of the internal viscous liquid, the motion of the external liquid is described by a wave equation written in the potential by perturbed velocity. Frequency equation of a longitudinally stiffened orthotropic, viscous liquid-contacting cylindrical shell is obtained on the basis of the Hamilton – Ostrogradsky principle of stationarity of action. Characteristic curves of dependence are constructed.\",\"PeriodicalId\":340024,\"journal\":{\"name\":\"Проблеми обчислювальної механіки і міцності конструкцій\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Проблеми обчислювальної механіки і міцності конструкцій\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15421/4220020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Проблеми обчислювальної механіки і міцності конструкцій","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15421/4220020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了理想液体中纵向加劲粘性充液正交各向异性圆柱壳的自由振动问题。用Navier - stoknors线性化方程描述内部粘性液体的运动,外部液体的运动用扰动速度写在势中的波动方程来描述。基于Hamilton - Ostrogradsky作用平稳性原理,得到了纵向加强型正交各向异性粘性接触液圆柱壳的频率方程。构造了相关特性曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
VIBRATIONS OF A LONGITUDINALLY STIFFENED, LIQUID-FILLED CYLINDRICAL SHELL IN LIQUID
In the paper we study free vibrations of a longitudinally stiffened, viscous liquid-filled orthotropic cylindrical shell in ideal liquid. The Navier – Stokеs linearized equation is used to describe the motion of the internal viscous liquid, the motion of the external liquid is described by a wave equation written in the potential by perturbed velocity. Frequency equation of a longitudinally stiffened orthotropic, viscous liquid-contacting cylindrical shell is obtained on the basis of the Hamilton – Ostrogradsky principle of stationarity of action. Characteristic curves of dependence are constructed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信