窄带seti的自监督异常检测

Y. Zhang, Ki Hyun Won, S. Son, A. Siemion, S. Croft
{"title":"窄带seti的自监督异常检测","authors":"Y. Zhang, Ki Hyun Won, S. Son, A. Siemion, S. Croft","doi":"10.1109/GlobalSIP.2018.8646437","DOIUrl":null,"url":null,"abstract":"The Search for Extra-terrestrial Intelligence (SETI) aims to find technological signals of extra-solar origin. Radio frequency SETI is characterized by large unlabeled datasets and complex interference environment. The infinite possibilities of potential signal types require generalizable signal processing techniques with little human supervision. We present a generative model of self-supervised deep learning that can be used for anomaly detection and spatial filtering. We develop and evaluate our approach on spectrograms containing narrowband signals collected by Breakthrough Listen at the Green Bank telescope. The proposed approach is not meant to replace current narrowband searches but to demonstrate the potential to generalize to other signal types.","PeriodicalId":119131,"journal":{"name":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"SELF-SUPERVISED ANOMALY DETECTION FOR NARROWBAND SETI\",\"authors\":\"Y. Zhang, Ki Hyun Won, S. Son, A. Siemion, S. Croft\",\"doi\":\"10.1109/GlobalSIP.2018.8646437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Search for Extra-terrestrial Intelligence (SETI) aims to find technological signals of extra-solar origin. Radio frequency SETI is characterized by large unlabeled datasets and complex interference environment. The infinite possibilities of potential signal types require generalizable signal processing techniques with little human supervision. We present a generative model of self-supervised deep learning that can be used for anomaly detection and spatial filtering. We develop and evaluate our approach on spectrograms containing narrowband signals collected by Breakthrough Listen at the Green Bank telescope. The proposed approach is not meant to replace current narrowband searches but to demonstrate the potential to generalize to other signal types.\",\"PeriodicalId\":119131,\"journal\":{\"name\":\"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GlobalSIP.2018.8646437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2018.8646437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

搜寻地外智慧生物(SETI)旨在寻找太阳系外起源的技术信号。射频搜寻地外文明具有未标记数据集大、干扰环境复杂的特点。潜在信号类型的无限可能性需要很少人为监督的通用信号处理技术。我们提出了一种可用于异常检测和空间过滤的自监督深度学习生成模型。我们开发并评估了我们在包含窄带信号的频谱图上的方法,这些信号是由Green Bank望远镜上的Breakthrough Listen收集的。提出的方法不是为了取代目前的窄带搜索,而是为了展示推广到其他信号类型的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SELF-SUPERVISED ANOMALY DETECTION FOR NARROWBAND SETI
The Search for Extra-terrestrial Intelligence (SETI) aims to find technological signals of extra-solar origin. Radio frequency SETI is characterized by large unlabeled datasets and complex interference environment. The infinite possibilities of potential signal types require generalizable signal processing techniques with little human supervision. We present a generative model of self-supervised deep learning that can be used for anomaly detection and spatial filtering. We develop and evaluate our approach on spectrograms containing narrowband signals collected by Breakthrough Listen at the Green Bank telescope. The proposed approach is not meant to replace current narrowband searches but to demonstrate the potential to generalize to other signal types.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信