有界多交超图的分数覆盖

G. Gottlob, Matthias Lanzinger, R. Pichler, Igor Razgon
{"title":"有界多交超图的分数覆盖","authors":"G. Gottlob, Matthias Lanzinger, R. Pichler, Igor Razgon","doi":"10.4230/LIPIcs.MFCS.2020.41","DOIUrl":null,"url":null,"abstract":"Fractional (hyper-)graph theory is concerned with the specific problems that arise when fractional analogues of otherwise integer-valued (hyper-)graph invariants are considered. The focus of this paper is on fractional edge covers of hypergraphs. Our main technical result generalizes and unifies previous conditions under which the size of the support of fractional edge covers is bounded independently of the size of the hypergraph itself. This allows us to extend previous tractability results for checking if the fractional hypertree width of a given hypergraph is $\\leq k$ for some constant $k$. We also show how our results translate to fractional vertex covers.","PeriodicalId":369104,"journal":{"name":"International Symposium on Mathematical Foundations of Computer Science","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fractional Covers of Hypergraphs with Bounded Multi-Intersection\",\"authors\":\"G. Gottlob, Matthias Lanzinger, R. Pichler, Igor Razgon\",\"doi\":\"10.4230/LIPIcs.MFCS.2020.41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fractional (hyper-)graph theory is concerned with the specific problems that arise when fractional analogues of otherwise integer-valued (hyper-)graph invariants are considered. The focus of this paper is on fractional edge covers of hypergraphs. Our main technical result generalizes and unifies previous conditions under which the size of the support of fractional edge covers is bounded independently of the size of the hypergraph itself. This allows us to extend previous tractability results for checking if the fractional hypertree width of a given hypergraph is $\\\\leq k$ for some constant $k$. We also show how our results translate to fractional vertex covers.\",\"PeriodicalId\":369104,\"journal\":{\"name\":\"International Symposium on Mathematical Foundations of Computer Science\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Mathematical Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.MFCS.2020.41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Mathematical Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.MFCS.2020.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

分数(超)图论关注的是当考虑整数(超)图不变量的分数类似物时所产生的具体问题。本文主要研究超图的分数边盖。我们的主要技术成果推广和统一了以往的条件,在这些条件下,分数边盖的支持大小与超图本身的大小无关。这允许我们扩展先前的可跟踪性结果,以检查给定超图的分数超树宽度是否为$\leq k$对于某个常数$k$。我们还展示了我们的结果如何转化为分数顶点覆盖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional Covers of Hypergraphs with Bounded Multi-Intersection
Fractional (hyper-)graph theory is concerned with the specific problems that arise when fractional analogues of otherwise integer-valued (hyper-)graph invariants are considered. The focus of this paper is on fractional edge covers of hypergraphs. Our main technical result generalizes and unifies previous conditions under which the size of the support of fractional edge covers is bounded independently of the size of the hypergraph itself. This allows us to extend previous tractability results for checking if the fractional hypertree width of a given hypergraph is $\leq k$ for some constant $k$. We also show how our results translate to fractional vertex covers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信