基于数据流管理系统的在线推荐系统

C. Ludmann
{"title":"基于数据流管理系统的在线推荐系统","authors":"C. Ludmann","doi":"10.1145/2792838.2796544","DOIUrl":null,"url":null,"abstract":"In this paper, I present a novel approach for implementing a stream-based Recommender System (RecSys). I propose to add RecSys operators to an application-independent Data Stream Management System (DSMS) to allow writing continuous queries over data streams that calculate personalized sets of recommendations. That empowers RecSys providers to create a custom RecSys by writing queries in a declarative query language. This approach ensures a flexible and extendable usage of RecSys functions in different settings and benefits from matured features of DSMSs.","PeriodicalId":325637,"journal":{"name":"Proceedings of the 9th ACM Conference on Recommender Systems","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Online Recommender Systems based on Data Stream Management Systems\",\"authors\":\"C. Ludmann\",\"doi\":\"10.1145/2792838.2796544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, I present a novel approach for implementing a stream-based Recommender System (RecSys). I propose to add RecSys operators to an application-independent Data Stream Management System (DSMS) to allow writing continuous queries over data streams that calculate personalized sets of recommendations. That empowers RecSys providers to create a custom RecSys by writing queries in a declarative query language. This approach ensures a flexible and extendable usage of RecSys functions in different settings and benefits from matured features of DSMSs.\",\"PeriodicalId\":325637,\"journal\":{\"name\":\"Proceedings of the 9th ACM Conference on Recommender Systems\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th ACM Conference on Recommender Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2792838.2796544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2792838.2796544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在本文中,我提出了一种实现基于流的推荐系统(RecSys)的新方法。我建议将RecSys操作符添加到独立于应用程序的数据流管理系统(DSMS)中,以允许在计算个性化推荐集的数据流上编写连续查询。这使得RecSys提供程序能够通过使用声明性查询语言编写查询来创建自定义RecSys。这种方法确保了在不同设置中灵活和可扩展地使用RecSys功能,并受益于dsm的成熟特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online Recommender Systems based on Data Stream Management Systems
In this paper, I present a novel approach for implementing a stream-based Recommender System (RecSys). I propose to add RecSys operators to an application-independent Data Stream Management System (DSMS) to allow writing continuous queries over data streams that calculate personalized sets of recommendations. That empowers RecSys providers to create a custom RecSys by writing queries in a declarative query language. This approach ensures a flexible and extendable usage of RecSys functions in different settings and benefits from matured features of DSMSs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信