{"title":"基于CRNN-SVM的缺勤检测及早期检测系统","authors":"Niha Kamal Basha, Aisha Banu Wahab","doi":"10.1504/ijris.2019.10025172","DOIUrl":null,"url":null,"abstract":"In this paper the new model is proposed to automatically detect and predict absence seizure using hybrid deep learning algorithm [convolutional recurrent neural network (CRNN)] with single channel electroencephalography (EEG) only as input. This model comprises of four steps: 1) single channel segmentation process; 2) extraction of relevant features using convolution network; 3) recurrent network for detection and early detection; 4) SVM have been used as last layer to obtain a result with respect to time. This model enhances the feature extraction by feeding the raw input into convolutional layer, improves the detection with gated recurrent unit (GRU) and reduces the early detection rate with support vector machine (SVM). Our proposed model achieves 100% overall accuracy on seizure detection as normal and absence seizure and detect within three seconds of the overall seizure duration. Also this model can be act as a generic model for classification task with detection and early detection of bio-signal (EEG, ECG and EMG).","PeriodicalId":360794,"journal":{"name":"Int. J. Reason. based Intell. Syst.","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic absence seizure detection and early detection system using CRNN-SVM\",\"authors\":\"Niha Kamal Basha, Aisha Banu Wahab\",\"doi\":\"10.1504/ijris.2019.10025172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the new model is proposed to automatically detect and predict absence seizure using hybrid deep learning algorithm [convolutional recurrent neural network (CRNN)] with single channel electroencephalography (EEG) only as input. This model comprises of four steps: 1) single channel segmentation process; 2) extraction of relevant features using convolution network; 3) recurrent network for detection and early detection; 4) SVM have been used as last layer to obtain a result with respect to time. This model enhances the feature extraction by feeding the raw input into convolutional layer, improves the detection with gated recurrent unit (GRU) and reduces the early detection rate with support vector machine (SVM). Our proposed model achieves 100% overall accuracy on seizure detection as normal and absence seizure and detect within three seconds of the overall seizure duration. Also this model can be act as a generic model for classification task with detection and early detection of bio-signal (EEG, ECG and EMG).\",\"PeriodicalId\":360794,\"journal\":{\"name\":\"Int. J. Reason. based Intell. Syst.\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Reason. based Intell. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijris.2019.10025172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Reason. based Intell. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijris.2019.10025172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic absence seizure detection and early detection system using CRNN-SVM
In this paper the new model is proposed to automatically detect and predict absence seizure using hybrid deep learning algorithm [convolutional recurrent neural network (CRNN)] with single channel electroencephalography (EEG) only as input. This model comprises of four steps: 1) single channel segmentation process; 2) extraction of relevant features using convolution network; 3) recurrent network for detection and early detection; 4) SVM have been used as last layer to obtain a result with respect to time. This model enhances the feature extraction by feeding the raw input into convolutional layer, improves the detection with gated recurrent unit (GRU) and reduces the early detection rate with support vector machine (SVM). Our proposed model achieves 100% overall accuracy on seizure detection as normal and absence seizure and detect within three seconds of the overall seizure duration. Also this model can be act as a generic model for classification task with detection and early detection of bio-signal (EEG, ECG and EMG).