Human-object-object-interaction给养

Shaogang Ren, Yu Sun
{"title":"Human-object-object-interaction给养","authors":"Shaogang Ren, Yu Sun","doi":"10.1109/WORV.2013.6521912","DOIUrl":null,"url":null,"abstract":"This paper presents a novel human-object-object (HOO) interaction affordance learning approach that models the interaction motions between paired objects in a human-object-object way and use the motion models to improve the object recognition reliability. The innate interaction-affordance knowledge of the paired objects is modeled from a set of labeled training data that contains relative motions of the paired objects, humans actions, and object labels. The learned knowledge of the pair relationship is represented with a Bayesian Network and the trained network is used to improve recognition reliability of the objects.","PeriodicalId":130461,"journal":{"name":"2013 IEEE Workshop on Robot Vision (WORV)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Human-object-object-interaction affordance\",\"authors\":\"Shaogang Ren, Yu Sun\",\"doi\":\"10.1109/WORV.2013.6521912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel human-object-object (HOO) interaction affordance learning approach that models the interaction motions between paired objects in a human-object-object way and use the motion models to improve the object recognition reliability. The innate interaction-affordance knowledge of the paired objects is modeled from a set of labeled training data that contains relative motions of the paired objects, humans actions, and object labels. The learned knowledge of the pair relationship is represented with a Bayesian Network and the trained network is used to improve recognition reliability of the objects.\",\"PeriodicalId\":130461,\"journal\":{\"name\":\"2013 IEEE Workshop on Robot Vision (WORV)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Workshop on Robot Vision (WORV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WORV.2013.6521912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Workshop on Robot Vision (WORV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WORV.2013.6521912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

提出了一种新的人-物-物(HOO)交互功能学习方法,以人-物-物的方式对配对对象之间的交互运动进行建模,并利用这些运动模型来提高对象识别的可靠性。配对对象的先天交互赋能性知识是从一组标记的训练数据中建模的,这些数据包含配对对象、人类动作和对象标签的相对运动。将学习到的对关系的知识用贝叶斯网络表示,并利用训练好的网络提高目标识别的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human-object-object-interaction affordance
This paper presents a novel human-object-object (HOO) interaction affordance learning approach that models the interaction motions between paired objects in a human-object-object way and use the motion models to improve the object recognition reliability. The innate interaction-affordance knowledge of the paired objects is modeled from a set of labeled training data that contains relative motions of the paired objects, humans actions, and object labels. The learned knowledge of the pair relationship is represented with a Bayesian Network and the trained network is used to improve recognition reliability of the objects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信