SAR和无人机图像纹理测度容量的梯度分布矩阵和空隙性

A. Potapov, F. F. Lazko
{"title":"SAR和无人机图像纹理测度容量的梯度分布矩阵和空隙性","authors":"A. Potapov, F. F. Lazko","doi":"10.1109/RADAR.2016.8059256","DOIUrl":null,"url":null,"abstract":"This article gives a brief description of two widely used texture measures of SAR and UAVs images. They are gradients distribution or co-occurrence matrices and lacunarity. We also provide detailed outlines of mentioned above matrices calculation in order to introduce the way of texture features extraction. At the end of the article, we examine functional connection between the first texture feature and absolute value of offset.","PeriodicalId":245387,"journal":{"name":"2016 CIE International Conference on Radar (RADAR)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Gradients distribution matrices and lacunarity in the capacity of texture measures of SAR and UAVs images\",\"authors\":\"A. Potapov, F. F. Lazko\",\"doi\":\"10.1109/RADAR.2016.8059256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article gives a brief description of two widely used texture measures of SAR and UAVs images. They are gradients distribution or co-occurrence matrices and lacunarity. We also provide detailed outlines of mentioned above matrices calculation in order to introduce the way of texture features extraction. At the end of the article, we examine functional connection between the first texture feature and absolute value of offset.\",\"PeriodicalId\":245387,\"journal\":{\"name\":\"2016 CIE International Conference on Radar (RADAR)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 CIE International Conference on Radar (RADAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADAR.2016.8059256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 CIE International Conference on Radar (RADAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2016.8059256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文简要介绍了SAR和无人机图像中常用的两种纹理度量方法。它们是梯度分布或共现矩阵和空隙性。为了介绍纹理特征提取的方法,我们还提供了上述矩阵计算的详细轮廓。在文章的最后,我们研究了第一个纹理特征与偏移绝对值之间的功能联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gradients distribution matrices and lacunarity in the capacity of texture measures of SAR and UAVs images
This article gives a brief description of two widely used texture measures of SAR and UAVs images. They are gradients distribution or co-occurrence matrices and lacunarity. We also provide detailed outlines of mentioned above matrices calculation in order to introduce the way of texture features extraction. At the end of the article, we examine functional connection between the first texture feature and absolute value of offset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信