{"title":"一种支持运行时估计和补偿的时间-数字转换器的新型FPGA实现","authors":"Van Luan Dinh, X. Nguyen, Hyuk-Jae Lee","doi":"10.1145/3322482","DOIUrl":null,"url":null,"abstract":"Time-to-digital converters (TDCs) are widely used in applications that require the measurement of the time interval between events. In previous designs using a feedback loop and an extended delay line, process-voltage-temperature (PVT) variation often decreases the accuracy of measurements. To overcome the loss of accuracy caused by PVT variation, this study proposes a novel design of a synthesizable TDC that employs run-time estimation and compensation of PVT variation. A delay line consisting of a series of buffers is used to detect the period of a ring oscillator designed to measure the time interval between two events. By comparing the detected period and the system clock, the variation of the oscillation period is compensated at run-time. The proposed TDC is successfully implemented by using a low-cost Xilinx Spartan-6 LX9 FPGA with a 50-MHz oscillator. Experimental results show that the proposed TDC is robust to PVT variation with a resolution of 19.1 ps. In comparison with previous design, the proposed TDC achieves about five times better tradeoff in the area, resolution, and frequency of the reference clock.","PeriodicalId":162787,"journal":{"name":"ACM Transactions on Reconfigurable Technology and Systems (TRETS)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Novel FPGA Implementation of a Time-to-Digital Converter Supporting Run-Time Estimation and Compensation\",\"authors\":\"Van Luan Dinh, X. Nguyen, Hyuk-Jae Lee\",\"doi\":\"10.1145/3322482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time-to-digital converters (TDCs) are widely used in applications that require the measurement of the time interval between events. In previous designs using a feedback loop and an extended delay line, process-voltage-temperature (PVT) variation often decreases the accuracy of measurements. To overcome the loss of accuracy caused by PVT variation, this study proposes a novel design of a synthesizable TDC that employs run-time estimation and compensation of PVT variation. A delay line consisting of a series of buffers is used to detect the period of a ring oscillator designed to measure the time interval between two events. By comparing the detected period and the system clock, the variation of the oscillation period is compensated at run-time. The proposed TDC is successfully implemented by using a low-cost Xilinx Spartan-6 LX9 FPGA with a 50-MHz oscillator. Experimental results show that the proposed TDC is robust to PVT variation with a resolution of 19.1 ps. In comparison with previous design, the proposed TDC achieves about five times better tradeoff in the area, resolution, and frequency of the reference clock.\",\"PeriodicalId\":162787,\"journal\":{\"name\":\"ACM Transactions on Reconfigurable Technology and Systems (TRETS)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Reconfigurable Technology and Systems (TRETS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3322482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Reconfigurable Technology and Systems (TRETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3322482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Novel FPGA Implementation of a Time-to-Digital Converter Supporting Run-Time Estimation and Compensation
Time-to-digital converters (TDCs) are widely used in applications that require the measurement of the time interval between events. In previous designs using a feedback loop and an extended delay line, process-voltage-temperature (PVT) variation often decreases the accuracy of measurements. To overcome the loss of accuracy caused by PVT variation, this study proposes a novel design of a synthesizable TDC that employs run-time estimation and compensation of PVT variation. A delay line consisting of a series of buffers is used to detect the period of a ring oscillator designed to measure the time interval between two events. By comparing the detected period and the system clock, the variation of the oscillation period is compensated at run-time. The proposed TDC is successfully implemented by using a low-cost Xilinx Spartan-6 LX9 FPGA with a 50-MHz oscillator. Experimental results show that the proposed TDC is robust to PVT variation with a resolution of 19.1 ps. In comparison with previous design, the proposed TDC achieves about five times better tradeoff in the area, resolution, and frequency of the reference clock.