指数随机图建模的最新进展

A. Caimo, Isabella Gollini
{"title":"指数随机图建模的最新进展","authors":"A. Caimo, Isabella Gollini","doi":"10.1353/mpr.2023.0000","DOIUrl":null,"url":null,"abstract":"Abstract:Exponential random graph models (ERGMs) are one of the most popular statistical methods for analysing relational network structures. ERGMs represent generative statistical network processes that allow researchers to specify sufficient statistics in the form of counts of network configurations associated to potential dependencies between and across particular sets of nodes. In this paper, we review some of the most interesting recent advances for the ERGM framework. In particular, we focus on the modelling extensions for valued, multi-layer and multi-level networks.","PeriodicalId":434988,"journal":{"name":"Mathematical Proceedings of the Royal Irish Academy","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Advances In Exponential Random Graph Modelling\",\"authors\":\"A. Caimo, Isabella Gollini\",\"doi\":\"10.1353/mpr.2023.0000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract:Exponential random graph models (ERGMs) are one of the most popular statistical methods for analysing relational network structures. ERGMs represent generative statistical network processes that allow researchers to specify sufficient statistics in the form of counts of network configurations associated to potential dependencies between and across particular sets of nodes. In this paper, we review some of the most interesting recent advances for the ERGM framework. In particular, we focus on the modelling extensions for valued, multi-layer and multi-level networks.\",\"PeriodicalId\":434988,\"journal\":{\"name\":\"Mathematical Proceedings of the Royal Irish Academy\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Royal Irish Academy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1353/mpr.2023.0000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Royal Irish Academy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1353/mpr.2023.0000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要指数随机图模型是分析关系网络结构最常用的统计方法之一。ergm代表生成的统计网络过程,允许研究人员以与特定节点集之间和之间的潜在依赖关系相关的网络配置计数的形式指定足够的统计数据。在本文中,我们回顾了ERGM框架的一些最有趣的最新进展。特别地,我们专注于有值、多层和多层次网络的建模扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent Advances In Exponential Random Graph Modelling
Abstract:Exponential random graph models (ERGMs) are one of the most popular statistical methods for analysing relational network structures. ERGMs represent generative statistical network processes that allow researchers to specify sufficient statistics in the form of counts of network configurations associated to potential dependencies between and across particular sets of nodes. In this paper, we review some of the most interesting recent advances for the ERGM framework. In particular, we focus on the modelling extensions for valued, multi-layer and multi-level networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信