{"title":"关于三角型封闭曲面的不可弯曲性","authors":"Yu. A. Aminov","doi":"10.1070/SM1992V071N02ABEH001408","DOIUrl":null,"url":null,"abstract":"In connection with a well-known problem on the existence of closed bendable surfaces in E3 the author considers the class of surfaces for which each component of the radius vector is a trigonometric polynomial in two variables. Two theorems on the nonbendability of surfaces in this class are proved, and an expression for the volume of the domain bounded by such a surface is established. Theorem 1 (the main theorem) asserts the nonbendability of a surface under the condition that some Diophantine equation does not have negative solutions. In this case the coefficients of the second fundamental form can be expressed in a finite-valued way in terms of the coefficients of the first fundamental form as algebraic expressions.","PeriodicalId":208776,"journal":{"name":"Mathematics of The Ussr-sbornik","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON THE NONBENDABILITY OF CLOSED SURFACES OF TRIGONOMETRIC TYPE\",\"authors\":\"Yu. A. Aminov\",\"doi\":\"10.1070/SM1992V071N02ABEH001408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In connection with a well-known problem on the existence of closed bendable surfaces in E3 the author considers the class of surfaces for which each component of the radius vector is a trigonometric polynomial in two variables. Two theorems on the nonbendability of surfaces in this class are proved, and an expression for the volume of the domain bounded by such a surface is established. Theorem 1 (the main theorem) asserts the nonbendability of a surface under the condition that some Diophantine equation does not have negative solutions. In this case the coefficients of the second fundamental form can be expressed in a finite-valued way in terms of the coefficients of the first fundamental form as algebraic expressions.\",\"PeriodicalId\":208776,\"journal\":{\"name\":\"Mathematics of The Ussr-sbornik\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of The Ussr-sbornik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1070/SM1992V071N02ABEH001408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-sbornik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/SM1992V071N02ABEH001408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ON THE NONBENDABILITY OF CLOSED SURFACES OF TRIGONOMETRIC TYPE
In connection with a well-known problem on the existence of closed bendable surfaces in E3 the author considers the class of surfaces for which each component of the radius vector is a trigonometric polynomial in two variables. Two theorems on the nonbendability of surfaces in this class are proved, and an expression for the volume of the domain bounded by such a surface is established. Theorem 1 (the main theorem) asserts the nonbendability of a surface under the condition that some Diophantine equation does not have negative solutions. In this case the coefficients of the second fundamental form can be expressed in a finite-valued way in terms of the coefficients of the first fundamental form as algebraic expressions.