{"title":"连续波和脉冲干扰对序列检测器直接序列扩频码采集的影响","authors":"K. Ravi, R. Ormondroyd","doi":"10.1109/MILCOM.1992.244151","DOIUrl":null,"url":null,"abstract":"The authors use a Monte-Carlo computer simulation to examine the effect of continuous-wave (CW) and pulse jamming, in the presence of additive Gaussian noise, on the acquisition performance of a noncoherent serial-search pseudonoise code synchronizer. The acquisition performances of three variants of the sequential detector, namely, the quantized log-likelihood detector, the biased square-law detector, and the ideal log-likelihood detector, are compared, and the degradation in performance is assessed. It is shown that, in the presence of Gaussian noise, the pulse jammer with a properly chosen duty factor can significantly degrade the acquisition performance compared to the CW jammer. Further, the pulsed jammer with a duty factor approaches 1.0 behaves similarly to the CW jammer at values of jammer-to-signal (J/S) less than 5 dB.<<ETX>>","PeriodicalId":394587,"journal":{"name":"MILCOM 92 Conference Record","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Effect of CW and pulse jamming on direct-sequence spread-spectrum code acquisition using a sequential detector\",\"authors\":\"K. Ravi, R. Ormondroyd\",\"doi\":\"10.1109/MILCOM.1992.244151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors use a Monte-Carlo computer simulation to examine the effect of continuous-wave (CW) and pulse jamming, in the presence of additive Gaussian noise, on the acquisition performance of a noncoherent serial-search pseudonoise code synchronizer. The acquisition performances of three variants of the sequential detector, namely, the quantized log-likelihood detector, the biased square-law detector, and the ideal log-likelihood detector, are compared, and the degradation in performance is assessed. It is shown that, in the presence of Gaussian noise, the pulse jammer with a properly chosen duty factor can significantly degrade the acquisition performance compared to the CW jammer. Further, the pulsed jammer with a duty factor approaches 1.0 behaves similarly to the CW jammer at values of jammer-to-signal (J/S) less than 5 dB.<<ETX>>\",\"PeriodicalId\":394587,\"journal\":{\"name\":\"MILCOM 92 Conference Record\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MILCOM 92 Conference Record\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MILCOM.1992.244151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MILCOM 92 Conference Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM.1992.244151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of CW and pulse jamming on direct-sequence spread-spectrum code acquisition using a sequential detector
The authors use a Monte-Carlo computer simulation to examine the effect of continuous-wave (CW) and pulse jamming, in the presence of additive Gaussian noise, on the acquisition performance of a noncoherent serial-search pseudonoise code synchronizer. The acquisition performances of three variants of the sequential detector, namely, the quantized log-likelihood detector, the biased square-law detector, and the ideal log-likelihood detector, are compared, and the degradation in performance is assessed. It is shown that, in the presence of Gaussian noise, the pulse jammer with a properly chosen duty factor can significantly degrade the acquisition performance compared to the CW jammer. Further, the pulsed jammer with a duty factor approaches 1.0 behaves similarly to the CW jammer at values of jammer-to-signal (J/S) less than 5 dB.<>