基于多变量灰色模型的BEMD高光谱分类

Zhi He, Jing Jin, Qiang Wang, Yi Shen, Yan Wang
{"title":"基于多变量灰色模型的BEMD高光谱分类","authors":"Zhi He, Jing Jin, Qiang Wang, Yi Shen, Yan Wang","doi":"10.1109/I2MTC.2012.6365365","DOIUrl":null,"url":null,"abstract":"Bi-dimensional empirical mode decomposition (BEMD) has been one of the core activities in image processing. Unfortunately, this promising technique is sensitive to boundary effect. Here, a new technique based on multivariate grey model termed as GM(1, 3) is developed for boundary extension in BEMD. More specifically, pixel values and coordinates of the image are regarded as characteristic data series and relative data series of GM(1, 3), respectively. Therefore, the extended image is decomposed into several BIMFs and a residue. Eventually, the corresponding parts of the BIMFs as well as the final residue are extracted as the decomposition results of original image. The effectiveness of the proposed approach is tested on hyperspectral classification in which the generally acknowledged support vector machine (SVM) is adopted as classifier. Experimental results confirm the validity of the proposed method.","PeriodicalId":387839,"journal":{"name":"2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multivariate grey model based BEMD for hyperspectral classification\",\"authors\":\"Zhi He, Jing Jin, Qiang Wang, Yi Shen, Yan Wang\",\"doi\":\"10.1109/I2MTC.2012.6365365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bi-dimensional empirical mode decomposition (BEMD) has been one of the core activities in image processing. Unfortunately, this promising technique is sensitive to boundary effect. Here, a new technique based on multivariate grey model termed as GM(1, 3) is developed for boundary extension in BEMD. More specifically, pixel values and coordinates of the image are regarded as characteristic data series and relative data series of GM(1, 3), respectively. Therefore, the extended image is decomposed into several BIMFs and a residue. Eventually, the corresponding parts of the BIMFs as well as the final residue are extracted as the decomposition results of original image. The effectiveness of the proposed approach is tested on hyperspectral classification in which the generally acknowledged support vector machine (SVM) is adopted as classifier. Experimental results confirm the validity of the proposed method.\",\"PeriodicalId\":387839,\"journal\":{\"name\":\"2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I2MTC.2012.6365365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC.2012.6365365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

二维经验模态分解(BEMD)一直是图像处理领域的核心技术之一。不幸的是,这种有前途的技术对边界效应很敏感。本文提出了一种基于多元灰色模型GM(1,3)的边界扩展方法。更具体地说,将图像的像素值和坐标分别作为GM(1,3)的特征数据序列和相对数据序列。因此,将扩展后的图像分解为若干个bimf和一个残差。最后提取bimf的对应部分以及最终残差作为原始图像的分解结果。在采用公认支持向量机(SVM)作为分类器的高光谱分类中,验证了该方法的有效性。实验结果证实了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multivariate grey model based BEMD for hyperspectral classification
Bi-dimensional empirical mode decomposition (BEMD) has been one of the core activities in image processing. Unfortunately, this promising technique is sensitive to boundary effect. Here, a new technique based on multivariate grey model termed as GM(1, 3) is developed for boundary extension in BEMD. More specifically, pixel values and coordinates of the image are regarded as characteristic data series and relative data series of GM(1, 3), respectively. Therefore, the extended image is decomposed into several BIMFs and a residue. Eventually, the corresponding parts of the BIMFs as well as the final residue are extracted as the decomposition results of original image. The effectiveness of the proposed approach is tested on hyperspectral classification in which the generally acknowledged support vector machine (SVM) is adopted as classifier. Experimental results confirm the validity of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信