基于多尺度域自适应网络结构的人群景观YOLOV5模型改进

Xiangping Zhang, H. Fan, Hongjin Zhu, Xianzhen Huang, Tao Wu, Hong-bin Zhou
{"title":"基于多尺度域自适应网络结构的人群景观YOLOV5模型改进","authors":"Xiangping Zhang, H. Fan, Hongjin Zhu, Xianzhen Huang, Tao Wu, Hong-bin Zhou","doi":"10.1109/CCIS53392.2021.9754600","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an improved model DAN-YOLOV5 based on YOLOV5. First, we use a mosaic enhancement strategy, which creates a large number of new samples on the existing VOC2007 dataset. Second, an innovative adaptive network module DAN is used on top of YOLOV5. The adaptive network module DAN is used to fuse features from same-layer scenes or cross-layer scenes. Finally, the experimental results show that the accuracy of the YOLOV5 dataset enhanced with shear-mixing and mosaic enhancement strategies is 71.02%, which is 13.56% better than the unenhanced data, and the average accuracy Figure is 80.05%, which is 33.11 percentage points better than the data. Applying the adaptive network module DAN to the YOLOV5 model, it improves the accuracy by 2.61% relative to YOLOV5 at 75.28%. Achieving such experimental results without increasing the computational effort and complexity at the grassroots level is well worth studying.","PeriodicalId":191226,"journal":{"name":"2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems (CCIS)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Improvement of YOLOV5 Model Based on the Structure of Multiscale Domain Adaptive Network for Crowdscape\",\"authors\":\"Xiangping Zhang, H. Fan, Hongjin Zhu, Xianzhen Huang, Tao Wu, Hong-bin Zhou\",\"doi\":\"10.1109/CCIS53392.2021.9754600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an improved model DAN-YOLOV5 based on YOLOV5. First, we use a mosaic enhancement strategy, which creates a large number of new samples on the existing VOC2007 dataset. Second, an innovative adaptive network module DAN is used on top of YOLOV5. The adaptive network module DAN is used to fuse features from same-layer scenes or cross-layer scenes. Finally, the experimental results show that the accuracy of the YOLOV5 dataset enhanced with shear-mixing and mosaic enhancement strategies is 71.02%, which is 13.56% better than the unenhanced data, and the average accuracy Figure is 80.05%, which is 33.11 percentage points better than the data. Applying the adaptive network module DAN to the YOLOV5 model, it improves the accuracy by 2.61% relative to YOLOV5 at 75.28%. Achieving such experimental results without increasing the computational effort and complexity at the grassroots level is well worth studying.\",\"PeriodicalId\":191226,\"journal\":{\"name\":\"2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems (CCIS)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems (CCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCIS53392.2021.9754600\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems (CCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIS53392.2021.9754600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种基于YOLOV5的改进模型DAN-YOLOV5。首先,我们使用马赛克增强策略,在现有的VOC2007数据集上创建大量新样本。其次,在YOLOV5的基础上采用了创新的自适应网络模块DAN。自适应网络模块DAN用于融合同层场景或跨层场景的特征。最后,实验结果表明,经过剪切混合和马赛克增强策略增强的YOLOV5数据集的准确率为71.02%,比未增强的数据提高13.56%,平均准确率为80.05%,比未增强的数据提高33.11个百分点。将自适应网络模块DAN应用于YOLOV5模型,相对于YOLOV5模型的75.28%精度提高了2.61%。在不增加基层计算量和复杂度的情况下获得这样的实验结果是非常值得研究的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improvement of YOLOV5 Model Based on the Structure of Multiscale Domain Adaptive Network for Crowdscape
In this paper, we propose an improved model DAN-YOLOV5 based on YOLOV5. First, we use a mosaic enhancement strategy, which creates a large number of new samples on the existing VOC2007 dataset. Second, an innovative adaptive network module DAN is used on top of YOLOV5. The adaptive network module DAN is used to fuse features from same-layer scenes or cross-layer scenes. Finally, the experimental results show that the accuracy of the YOLOV5 dataset enhanced with shear-mixing and mosaic enhancement strategies is 71.02%, which is 13.56% better than the unenhanced data, and the average accuracy Figure is 80.05%, which is 33.11 percentage points better than the data. Applying the adaptive network module DAN to the YOLOV5 model, it improves the accuracy by 2.61% relative to YOLOV5 at 75.28%. Achieving such experimental results without increasing the computational effort and complexity at the grassroots level is well worth studying.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信