针对人类行为检测和搜索的快速行动方案

Gang Yu, Junsong Yuan
{"title":"针对人类行为检测和搜索的快速行动方案","authors":"Gang Yu, Junsong Yuan","doi":"10.1109/CVPR.2015.7298735","DOIUrl":null,"url":null,"abstract":"In this paper we target at generating generic action proposals in unconstrained videos. Each action proposal corresponds to a temporal series of spatial bounding boxes, i.e., a spatio-temporal video tube, which has a good potential to locate one human action. Assuming each action is performed by a human with meaningful motion, both appearance and motion cues are utilized to measure the actionness of the video tubes. After picking those spatiotemporal paths of high actionness scores, our action proposal generation is formulated as a maximum set coverage problem, where greedy search is performed to select a set of action proposals that can maximize the overall actionness score. Compared with existing action proposal approaches, our action proposals do not rely on video segmentation and can be generated in nearly real-time. Experimental results on two challenging datasets, MSRII and UCF 101, validate the superior performance of our action proposals as well as competitive results on action detection and search.","PeriodicalId":444472,"journal":{"name":"2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"156 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"214","resultStr":"{\"title\":\"Fast action proposals for human action detection and search\",\"authors\":\"Gang Yu, Junsong Yuan\",\"doi\":\"10.1109/CVPR.2015.7298735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we target at generating generic action proposals in unconstrained videos. Each action proposal corresponds to a temporal series of spatial bounding boxes, i.e., a spatio-temporal video tube, which has a good potential to locate one human action. Assuming each action is performed by a human with meaningful motion, both appearance and motion cues are utilized to measure the actionness of the video tubes. After picking those spatiotemporal paths of high actionness scores, our action proposal generation is formulated as a maximum set coverage problem, where greedy search is performed to select a set of action proposals that can maximize the overall actionness score. Compared with existing action proposal approaches, our action proposals do not rely on video segmentation and can be generated in nearly real-time. Experimental results on two challenging datasets, MSRII and UCF 101, validate the superior performance of our action proposals as well as competitive results on action detection and search.\",\"PeriodicalId\":444472,\"journal\":{\"name\":\"2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"156 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"214\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2015.7298735\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2015.7298735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 214

摘要

在本文中,我们的目标是在无约束视频中生成通用的行动建议。每个动作建议对应于一个时间序列的空间边界框,即一个时空视频管,具有很好的定位一个人类动作的潜力。假设每个动作都是由具有意义的动作的人执行的,则使用外观和动作线索来测量视频管的动作性。在挑选出行动性得分较高的时空路径后,我们的行动建议生成被表述为最大集合覆盖问题,其中进行贪婪搜索以选择一组能够最大化整体行动性得分的行动建议。与现有的行动建议方法相比,我们的行动建议不依赖于视频分割,可以近乎实时地生成。在两个具有挑战性的数据集MSRII和UCF 101上的实验结果验证了我们的动作建议的优越性能以及在动作检测和搜索方面的竞争结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast action proposals for human action detection and search
In this paper we target at generating generic action proposals in unconstrained videos. Each action proposal corresponds to a temporal series of spatial bounding boxes, i.e., a spatio-temporal video tube, which has a good potential to locate one human action. Assuming each action is performed by a human with meaningful motion, both appearance and motion cues are utilized to measure the actionness of the video tubes. After picking those spatiotemporal paths of high actionness scores, our action proposal generation is formulated as a maximum set coverage problem, where greedy search is performed to select a set of action proposals that can maximize the overall actionness score. Compared with existing action proposal approaches, our action proposals do not rely on video segmentation and can be generated in nearly real-time. Experimental results on two challenging datasets, MSRII and UCF 101, validate the superior performance of our action proposals as well as competitive results on action detection and search.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信