论副相容类型论中的对立与对偶

J. C. Agudelo, Andrés Sicard-Ramírez
{"title":"论副相容类型论中的对立与对偶","authors":"J. C. Agudelo, Andrés Sicard-Ramírez","doi":"10.4204/EPTCS.357.3","DOIUrl":null,"url":null,"abstract":"A paraconsistent type theory (an extension of a fragment of intuitionistic type theory by adding opposite types) is here extended by adding co-function types. It is shown that, in the extended paraconsistent type system, the opposite type constructor can be viewed as an involution operation that transforms each type into its dual type. Moreover, intuitive interpretations of opposite and co-function types under different interpretations of types are discussed.","PeriodicalId":374401,"journal":{"name":"Workshop on Logical and Semantic Frameworks with Applications","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"About Opposition and Duality in Paraconsistent Type Theory\",\"authors\":\"J. C. Agudelo, Andrés Sicard-Ramírez\",\"doi\":\"10.4204/EPTCS.357.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A paraconsistent type theory (an extension of a fragment of intuitionistic type theory by adding opposite types) is here extended by adding co-function types. It is shown that, in the extended paraconsistent type system, the opposite type constructor can be viewed as an involution operation that transforms each type into its dual type. Moreover, intuitive interpretations of opposite and co-function types under different interpretations of types are discussed.\",\"PeriodicalId\":374401,\"journal\":{\"name\":\"Workshop on Logical and Semantic Frameworks with Applications\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Logical and Semantic Frameworks with Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.357.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Logical and Semantic Frameworks with Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.357.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

副一致类型理论(通过添加相反类型来扩展直觉类型理论的一部分)在这里通过添加协同功能类型来扩展。结果表明,在扩展的副一致类型系统中,相反的类型构造函数可以看作是将每个类型转换为其对偶类型的对合操作。此外,还讨论了不同类型解释下的对偶型和共函数型的直观解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
About Opposition and Duality in Paraconsistent Type Theory
A paraconsistent type theory (an extension of a fragment of intuitionistic type theory by adding opposite types) is here extended by adding co-function types. It is shown that, in the extended paraconsistent type system, the opposite type constructor can be viewed as an involution operation that transforms each type into its dual type. Moreover, intuitive interpretations of opposite and co-function types under different interpretations of types are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信