双稳串联反偏PIN二极管

Z. Glover, A. Siahmakoun
{"title":"双稳串联反偏PIN二极管","authors":"Z. Glover, A. Siahmakoun","doi":"10.1117/12.2568182","DOIUrl":null,"url":null,"abstract":"In Silicon photonics, there is an ever-growing need for optical switches capable of high-speed operation, needed for applications such as optical computing, microwave photonics, and LiDAR. One potential candidate for a highspeed optical switch consists of two PIN junctions connected in series, reverse-biased. When one PIN junction is fed with an oscillating optical input at some frequency and the other with a constant threshold input, the output displays bistable hysteresis, ideal for an optical binary switch. In this research, PSpice and MATLAB are used to develop mathematical models of the circuit and simulate the operation of the Symmetric PIN, or S-PIN switch at various frequencies. While the work done so far has been highly theoretical, measurements have been carried out on an optoelectronic prototype of the S-PIN in order to observe the basic operation of the device. Additionally, a model of the S-PIN developed in MATLAB agrees closely with simulations of the switch in PSpice. In the physical circuit, the presence of parasitic capacitance and inductance in the PIN junctions cause the shape of the output hysteresis to deteriorate as the running frequency is increased. Simulations show that if parasitic capacitance is minimized, the switch can operate in the GHz range. One method explored to mitigate this capacitance is impedance matching, which has shown to improve output bistability to some extent. Results from modeling indicate that the use of components with low capacitance has the most potential to allow the S-PIN to operate at higher frequencies competitive with modern electronic switches.","PeriodicalId":325839,"journal":{"name":"Optics and Photonics for Information Processing XIV","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bistable serially connected reverse-biased PIN diodes\",\"authors\":\"Z. Glover, A. Siahmakoun\",\"doi\":\"10.1117/12.2568182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Silicon photonics, there is an ever-growing need for optical switches capable of high-speed operation, needed for applications such as optical computing, microwave photonics, and LiDAR. One potential candidate for a highspeed optical switch consists of two PIN junctions connected in series, reverse-biased. When one PIN junction is fed with an oscillating optical input at some frequency and the other with a constant threshold input, the output displays bistable hysteresis, ideal for an optical binary switch. In this research, PSpice and MATLAB are used to develop mathematical models of the circuit and simulate the operation of the Symmetric PIN, or S-PIN switch at various frequencies. While the work done so far has been highly theoretical, measurements have been carried out on an optoelectronic prototype of the S-PIN in order to observe the basic operation of the device. Additionally, a model of the S-PIN developed in MATLAB agrees closely with simulations of the switch in PSpice. In the physical circuit, the presence of parasitic capacitance and inductance in the PIN junctions cause the shape of the output hysteresis to deteriorate as the running frequency is increased. Simulations show that if parasitic capacitance is minimized, the switch can operate in the GHz range. One method explored to mitigate this capacitance is impedance matching, which has shown to improve output bistability to some extent. Results from modeling indicate that the use of components with low capacitance has the most potential to allow the S-PIN to operate at higher frequencies competitive with modern electronic switches.\",\"PeriodicalId\":325839,\"journal\":{\"name\":\"Optics and Photonics for Information Processing XIV\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Photonics for Information Processing XIV\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2568182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Photonics for Information Processing XIV","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2568182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bistable serially connected reverse-biased PIN diodes
In Silicon photonics, there is an ever-growing need for optical switches capable of high-speed operation, needed for applications such as optical computing, microwave photonics, and LiDAR. One potential candidate for a highspeed optical switch consists of two PIN junctions connected in series, reverse-biased. When one PIN junction is fed with an oscillating optical input at some frequency and the other with a constant threshold input, the output displays bistable hysteresis, ideal for an optical binary switch. In this research, PSpice and MATLAB are used to develop mathematical models of the circuit and simulate the operation of the Symmetric PIN, or S-PIN switch at various frequencies. While the work done so far has been highly theoretical, measurements have been carried out on an optoelectronic prototype of the S-PIN in order to observe the basic operation of the device. Additionally, a model of the S-PIN developed in MATLAB agrees closely with simulations of the switch in PSpice. In the physical circuit, the presence of parasitic capacitance and inductance in the PIN junctions cause the shape of the output hysteresis to deteriorate as the running frequency is increased. Simulations show that if parasitic capacitance is minimized, the switch can operate in the GHz range. One method explored to mitigate this capacitance is impedance matching, which has shown to improve output bistability to some extent. Results from modeling indicate that the use of components with low capacitance has the most potential to allow the S-PIN to operate at higher frequencies competitive with modern electronic switches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信