在冰立方学习低损耗内存分配的科学工作流程

Carl Witt, J. Santen, U. Leser
{"title":"在冰立方学习低损耗内存分配的科学工作流程","authors":"Carl Witt, J. Santen, U. Leser","doi":"10.1109/HPCS48598.2019.9188126","DOIUrl":null,"url":null,"abstract":"In scientific computing, scheduling tasks with heterogeneous resource requirements still requires users to estimate the resource usage of tasks. These estimates tend to be inaccurate in spite of laborious manual processes used to derive them. We show that machine learning outperforms user estimates, and models trained at runtime improve the resource allocation for workflows. We focus on allocating main memory in batch systems, which enforce resource limits by terminating jobs.The key idea is to train prediction models that minimize the costs resulting from prediction errors rather than minimizing prediction errors. In addition, we detect and exploit opportunities to predict resource usage of individual tasks based on their input size.We evaluated our approach on a 10 month production log from the IceCube South Pole Neutrino Observatory experiment. We compare our method to the performance of the current production system and a state-of-the-art method. We show that memory allocation quality can be increased from about 50% to 70%, while at the same time allowing users to provide only rough estimates of resource usage.","PeriodicalId":371856,"journal":{"name":"2019 International Conference on High Performance Computing & Simulation (HPCS)","volume":"158 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Learning Low-Wastage Memory Allocations for Scientific Workflows at IceCube\",\"authors\":\"Carl Witt, J. Santen, U. Leser\",\"doi\":\"10.1109/HPCS48598.2019.9188126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In scientific computing, scheduling tasks with heterogeneous resource requirements still requires users to estimate the resource usage of tasks. These estimates tend to be inaccurate in spite of laborious manual processes used to derive them. We show that machine learning outperforms user estimates, and models trained at runtime improve the resource allocation for workflows. We focus on allocating main memory in batch systems, which enforce resource limits by terminating jobs.The key idea is to train prediction models that minimize the costs resulting from prediction errors rather than minimizing prediction errors. In addition, we detect and exploit opportunities to predict resource usage of individual tasks based on their input size.We evaluated our approach on a 10 month production log from the IceCube South Pole Neutrino Observatory experiment. We compare our method to the performance of the current production system and a state-of-the-art method. We show that memory allocation quality can be increased from about 50% to 70%, while at the same time allowing users to provide only rough estimates of resource usage.\",\"PeriodicalId\":371856,\"journal\":{\"name\":\"2019 International Conference on High Performance Computing & Simulation (HPCS)\",\"volume\":\"158 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on High Performance Computing & Simulation (HPCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCS48598.2019.9188126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCS48598.2019.9188126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在科学计算中,调度具有异构资源需求的任务仍然需要用户估计任务的资源使用情况。这些估计往往是不准确的,尽管使用了费力的人工过程来得出它们。我们表明机器学习优于用户估计,并且在运行时训练的模型改善了工作流的资源分配。我们主要关注批处理系统中的主内存分配,它通过终止作业来强制执行资源限制。关键思想是训练预测模型,使预测误差的代价最小化,而不是使预测误差最小化。此外,我们检测并利用机会,根据输入大小预测单个任务的资源使用情况。我们在冰立方南极中微子观测站实验的10个月生产日志上评估了我们的方法。我们将我们的方法与当前生产系统的性能和最先进的方法进行比较。我们表明,内存分配质量可以从大约50%提高到70%,同时允许用户仅提供对资源使用情况的粗略估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Low-Wastage Memory Allocations for Scientific Workflows at IceCube
In scientific computing, scheduling tasks with heterogeneous resource requirements still requires users to estimate the resource usage of tasks. These estimates tend to be inaccurate in spite of laborious manual processes used to derive them. We show that machine learning outperforms user estimates, and models trained at runtime improve the resource allocation for workflows. We focus on allocating main memory in batch systems, which enforce resource limits by terminating jobs.The key idea is to train prediction models that minimize the costs resulting from prediction errors rather than minimizing prediction errors. In addition, we detect and exploit opportunities to predict resource usage of individual tasks based on their input size.We evaluated our approach on a 10 month production log from the IceCube South Pole Neutrino Observatory experiment. We compare our method to the performance of the current production system and a state-of-the-art method. We show that memory allocation quality can be increased from about 50% to 70%, while at the same time allowing users to provide only rough estimates of resource usage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信